CO-ORDINATE GEOMETRY PROBLEMS. ANS

1.(a) Draw triangle ABC where A is (-3,3), B is (-2,-2), C is (2,2)

(b) Determine, **with clear reasons** to back up your conclusion, whether the triangle ABC is scalene, isosceles or equilateral.

$$AC^{2} = 5^{2} + 1^{2} = 26$$

 $AB^{2} = 1^{2} + 5^{2} = 26$
 $BC^{2} = 4^{2} + 4^{2} = 32$

AC = AB so ISOSCELES.

(c) Find M, the mid point of AB. M = (-2.5, 0.5)

(d) Find N, the mid point of AC. N = (-.5, 2.5)

(e) A MEDIAN joins the mid point of one side to the opposite corner. **Draw all three medians of this triangle**.

(f) The CENTROID, G, is the point of intersection of the medians. G = (-1, 1)

(g) What is the equation of the median from A to BC?

$$y = -x$$

(h) Calculate the LENGTH of the median from A to BC.

$$L^2 = 3^2 + 3^2 = 18$$
 so $L = \sqrt{18}$

(i) Calculate, by any method, the AREA of triangle ABC but be sure to explain what you are doing.

Could find length of BC = $\sqrt{32}$ and median is at right angles because it is an Isosceles triangle so area = $\frac{\sqrt{32} \times \sqrt{18}}{2}$ = 12 cm²

3(a) **Prove** conclusively that the following four points form a **rectangle** and find its area **exactly.**

$$A(2,-3), B(11,3), C(7,9), D(-2,3)$$

Grad AB =
$$\frac{6}{9} = \frac{2}{3}$$
 Grad CD = $\frac{6}{9} = \frac{2}{3}$ so AB // CD
Grad AD = $-\frac{6}{4} = -\frac{3}{2}$ Grad BC = $-\frac{6}{4} = -\frac{3}{2}$ so AD // BC

Also
$$\frac{3}{2} \times \frac{-2}{3} = -1$$
 so ALL angles are 90°

ABCD is a rectangle. AREA = AB ×BC =
$$\sqrt{(9^2 + 6^2)} \times \sqrt{(6^2 + 4^2)} = 78 \text{ cm}^2$$