\qquad

CO-ORDINATE GEOMETRY PROBLEMS. ANS

1.(a) Draw triangle ABC where A is $(-3,3), \mathrm{B}$ is $(-2,-2), \mathrm{C}$ is $(2,2)$

(b) Determine, with clear reasons to back up your conclusion, whether the triangle ABC is scalene, isosceles or equilateral.
$\mathrm{AC}^{2}=5^{2}+1^{2}=26$
$\mathrm{AB}^{2}=1^{2}+5^{2}=26$
$\mathrm{BC}^{2}=4^{2}+4^{2}=32$
$\mathrm{AC}=\mathrm{AB}$ so ISOSCELES.
(c) Find M, the mid point of $A B . \quad M=(-2.5,0.5)$
(d) Find N, the mid point of AC. $\mathrm{N}=\left(\begin{array}{ll}-.5 & 2.5\end{array}\right)$
(e) A MEDIAN joins the mid point of one side to the opposite corner. Draw all three medians of this triangle.
(f) The CENTROID, G, is the point
of intersection of the medians. $\mathrm{G}=(-1,1)$
(g) What is the equation of the median from A to BC ?

$$
y=-x
$$

(h) Calculate the LENGTH of the median from A to BC.
$L^{2}=3^{2}+3^{2}=18 \quad$ so $L=\sqrt{ } 18$
(i) Calculate, by any method, the AREA of triangle ABC but be sure to explain what you are doing.
Could find length of $\mathrm{BC}=\sqrt{ } 32$ and median is at right angles because it is an Isosceles triangle so area $=\frac{\sqrt{ } 32 \times \sqrt{ } 18}{2}=12 \mathrm{~cm}^{2}$

3(a) Prove conclusively that the following four points form a rectangle and find its area exactly.
$\mathrm{A}(2,-3), \mathrm{B}(11,3), \mathrm{C}(7,9), \mathrm{D}(-2,3)$
C

$\operatorname{Grad} \mathrm{AB}=\frac{6}{9}=\frac{2}{3}$ Grad $\mathrm{CD}=\frac{6}{9}=\frac{2}{3}$ so $\mathrm{AB} / / \mathrm{CD}$
$\operatorname{Grad} \mathrm{AD}=-\underline{6}=-\frac{3}{2} \quad \operatorname{Grad} \mathrm{BC}=-\underline{6}=-\frac{3}{2} \quad$ so $\mathrm{AD} / / \mathrm{BC}$

Also $\frac{3}{2} \times \frac{-2}{3}=-1 \quad$ so ALL angles are 90°
ABCD is a rectangle. $\quad \mathrm{AREA}=\mathrm{AB} \times \mathrm{BC}=\sqrt{ }\left(9^{2}+6^{2}\right) \times \sqrt{ }\left(6^{2}+4^{2}\right)=78 \mathrm{~cm}^{2}$

