Given a gradient graph, find the equation of the function.

1. The minimum value of y is 3 and the graph of the gradient $\frac{d y}{d x}$ is given below. Find the equation of the graph and draw it on the axes below.

Working
Min point is (2, 3)
Equ of the gradient is $\underline{d y}=2 x-4$ $d x$
Antidiff to find equ for y :

$$
\begin{aligned}
& y=x^{2}-4 x+c \\
& \text { subs } x=2, y=3 \\
& 3=4-8+c \\
& 7=c
\end{aligned}
$$

Equ is $y=x^{2}-4 x+7$
Or $\quad y=(x-2)^{2}+3$
2. The minimum value of $f(x)$ is 1 .

The gradient function $f^{\prime}(x)$ is drawn below.
Find the equation of $y=f(x)$ and draw the graph showing the y intercept.

Working
Min point is (4, 1)
Equ of the gradient is $f^{\prime}(x)=\frac{x}{2}-2$
Antidiff to find equ for $f(x)$
$f(x)=\frac{x^{2}}{4}-2 x+c$
$\operatorname{Sub}(4,1) \quad 1=4-8+c \quad c=5$
Equ is $y=f(x)=\frac{x^{2}}{4}-2 x+5$
3. The maximum value of $g(x)=5$. The gradient function $g^{\prime}(x)$ is drawn below.
Find the equation of $y=g(x)$ and draw the graph showing the y intercept.

Working

MAX point is (2,5)
Equ of the gradient is $g^{\prime}(x)=-x+2$
Antidiff to find equ for $g(x)$
$g(x)=\frac{-x^{2}}{2}+2 x+c$
Subs $(2,5) \quad 5=-2+4+c \quad c=3$
Equ is $g(x)=\frac{-x^{2}}{2}+2 x+3$
4. The minimum value of $p(x)=1$. The gradient function $p^{\prime}(x)$ is drawn below.
Find the equation of $y=p(x)$ and draw the graph showing the y intercept.

Working

Min point is (-3 , 1)
Equ of the gradient is $p^{\prime}(x)=\underline{2 x}+2$
Antidiff to find equ for $p(x)$

$$
\begin{gathered}
p(x)=\frac{x^{2}}{3}+2 x+c \quad \text { subs }(-3,1) \\
1=3-6+c \quad c=4 \\
\text { Equ is } y=p(x)=\frac{x^{2}}{3}+2 x+4
\end{gathered}
$$

