THREE INVESTIGATIONS.

1(a) Find the coordinates of the points where the line $y=1 / 2 x$ crosses the circle given by $(x-4)^{2}+y^{2}=8$

(b)

A line of the form $y=m x$ can cross the circle $(x-4)^{2}+y^{2}=8$ once or twice or not at all.
Find the value of \boldsymbol{m} so that the line is a tangent.

The graphs above show the intersection points of $y=-\frac{6}{x}$ and $y=x+5$ Find the coordinates of the intersection points algebraically.
(b) Consider the line $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\mathbf{5}$ which has a fixed \boldsymbol{y} intercept at P but a variable gradient \boldsymbol{m}.

Line A crosses the hyperbola twice, Line B is a tangent and Line C does not cross. Find the value of \boldsymbol{m} so that $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{5}$ is a tangent.
(c) Write down the range of values for m so that there will be 2 intersections.
(d) Write down the range of values for m so that there will be no intersections.

3(a) The graphs below show $y=(x-3)^{2}$ and $y=x-3$

Calculate algebraically the intersection points.
(b) Consider the line $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}-\boldsymbol{7}$ which has a fixed \boldsymbol{y} intercept but a variable gradient \boldsymbol{m}.

Find the value of \boldsymbol{m} so that $y=m x-7$ is a tangent to the parabola $y=(x-3)^{2}$
(c) If $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}-\boldsymbol{k}$ is to be a tangent to $\boldsymbol{y}=(\boldsymbol{x}-\boldsymbol{k})^{2}$ show that $\boldsymbol{m}^{2}+\mathbf{4 k m}-\mathbf{4 k}=\mathbf{0}$

THREE INVESTIGATIONS.ANSWERS

1(a) Find the coordinates of the points where the line $y=1 / 2 x$ crosses the circle given by $(x-4)^{2}+y^{2}=8$

Subs $y=1 / 2 x$ into $(x-4)^{2}+y^{2}=8$ and we get $(x-4)^{2}+\underline{x}^{2}=8$

$$
\begin{gathered}
x^{2}-8 x+16+\frac{x^{2}}{4}=8 \\
4 x^{2}-32 x+64+x^{2}=32 \\
5 x^{2}-32 x+32=0 \\
x=1.24 \text { and } 5.16
\end{gathered}
$$

intersection points are $(1.24,0.62)$ and $(5.16,2.58)$
(b)

A line of the form $y=m x$ can cross the circle $(x-4)^{2}+y^{2}=8$ once or twice or not at all.
Find the value of \boldsymbol{m} so that the line is a tangent.
Subs $y=m x$ into $(x-4)^{2}+y^{2}=8$ and we get $(x-4)^{2}+m^{2} x^{2}=8$

$$
\begin{aligned}
& x^{2}-8 x+16+m^{2} x^{2}=8 \\
& \left(1+m^{2}\right) x^{2}-8 x+8=0
\end{aligned}
$$

This equation will only have 1 solution so the discriminant $=0$

$$
\begin{aligned}
\Delta=64-4 \times\left(1+m^{2}\right) \times 8 & =0 \\
64-32-32 m^{2} & =0 \\
32 & =32 \mathrm{~m}^{2} \\
m^{2} & =1
\end{aligned}
$$

so m could be 1 or -1
There are 2 possible tangents $y=x$ and $y=-x$

2(a)

The graphs above show the intersection points of $y=-\frac{6}{x}$ and $y=x+5$
Find the coordinates of the intersection points algebraically.

$$
\begin{aligned}
x+5 & =-\underline{6} \\
x^{2}+5 x & =-6 \\
x^{2}+5 x+6 & =0 \\
(x+2)(x+3) & =0 \\
x=-2 \text { and }-3 & \text { The intersection points are }(-2,3) \text { and }(-3,2)
\end{aligned}
$$

(b) Consider the line $\boldsymbol{y}=\boldsymbol{m x}+5$ which has a fixed \boldsymbol{y} intercept at P but a variable gradient \boldsymbol{m}.

Line A crosses the hyperbola twice, Line B is a tangent and Line C does not cross. Find the value of \boldsymbol{m} so that $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+5$ is a tangent.

$$
m x+5=-\frac{6}{x}
$$

$m x^{2}+5 x+6=0$
to be a tangent $\Delta=0$ so $25-24 m=0$ giving $m=\frac{25}{24}$
(c) Write down the range of values for m so that there will be 2 intersections.
$\Delta>0$ so $25-24 m>0$ giving $25>24 m$ so $\frac{25}{24}>m$
(d) Write down the range of values for m so that there will be no intersections.
$\Delta<0$ so $25-24 m<0$ giving $25<24 m$ so $\frac{25}{24}<m$

3(a) The graphs below show $y=(x-3)^{2}$ and $y=x-3$

Calculate algebraically the intersection points.

$$
\begin{aligned}
x^{2}-6 x+9 & =x-3 \\
x^{2}-7 x+12 & =0 \\
(x-3)(x-4) & =0
\end{aligned}
$$

So $x=3$ and $x=4$

The intersection points are:
$(3,0)$ and $(4,1)$
(b) Consider the line $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}-\boldsymbol{7}$ which has a fixed \boldsymbol{y} intercept but a variable gradient \boldsymbol{m}.

Find the value of \boldsymbol{m} so that $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}-7$ is a tangent to the parabola $y=(x-3)^{2}$

$$
x^{2}-6 x+9=m x-7
$$

$x^{2}-(m+6) x+16=0$
to be a tangent $)=0$

$$
\text { so }(m+6)^{2}-64=0
$$

$$
(m+6)=64
$$

$$
m+6= \pm 8
$$

hence $m=2$ or $m=-14$
This means there are 2 tangents from P above.
The tangents are $y=2 x-7$ and $y=-14 x-7$

(c) If $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}-\boldsymbol{k}$ is to be a tangent to $\boldsymbol{y}=(\boldsymbol{x}-\boldsymbol{k})^{2}$ show that $\boldsymbol{m}^{2}+\mathbf{4 k m}-\boldsymbol{4 k}=\mathbf{0}$

$$
x^{2}-2 k x+k^{2}=m x-k
$$

$$
x^{2}-(2 k+m) x+\left(k^{2}+k\right)=0
$$

For the line to be a tangent, this equation must have 1 solution so its discriminant $=0$

$$
\begin{aligned}
\Delta=(2 k+m)^{2}-4\left(k^{2}+k\right) & =0 \\
4 k^{2}+4 k m+m^{2}-4 k^{2}-4 k & =0 \\
\text { So } m^{2}+4 k m-4 k & =0
\end{aligned}
$$

