Solutions (or Roots) of Quadratics.
If the roots of a quadratic are α and β then the equation must be :
$(x-\alpha)(x-\beta)=0$

Multiplying out, we get:
$x^{2}-\alpha x-\beta x+\alpha \beta=0$
$x^{2}-(\alpha+\beta) x+\alpha \beta=0$
so for any quadratic equation in the
form $x^{2}+b x+c=0$
the PRODUCT of the roots $\alpha \beta=c$
and the SUM of the roots $\alpha+\beta=-b$
eg1. for the equation $x^{2}+9 x+20=0$ $\alpha \beta=20$ $\alpha+\beta=-9$
eg2. for this equation $x^{2}-5 x-6=0$

$$
\alpha \beta=-6
$$

$$
\alpha+\beta=+5
$$

eg3. for the equation: $3 x^{2}-5 x+11=0$ first we should divide by 3
$x^{2}-\frac{5}{3} x+\frac{11}{3}=0$
so $\quad \alpha \beta=\frac{11}{3}$

$$
\alpha+\beta=\frac{5}{3}
$$

1. Suppose we say that the roots of the equation $x^{2}-3 x+2=0$ are α and β then FIND the equation with roots of 2α and 2β.

$$
\begin{aligned}
\text { Firstly } \quad \alpha \beta & =2 \\
\text { and } \alpha+\beta & =3
\end{aligned}
$$

The equation would be :
$(x-2 \alpha)(x-2 \beta)=0$
Multiplying out, we get:
$x^{2}-2 \alpha x-2 \beta x+4 \alpha \beta=0$
$x^{2}-2(\alpha+\beta) x+4 \alpha \beta=0$
subs $\alpha \beta=2$
and $\alpha+\beta=3$
we get:
$x^{2}-2(3) x+4(2)=0$
$x^{2}-6 x+8=0$

> Or we just say: Product $=2 \alpha \times 2 \beta$ $\quad \begin{aligned} & =4 \times \alpha \beta=\mathbf{8} \\ \text { Sum } & =2 \alpha+2 \beta \\ & =2(\alpha+\beta)=\mathbf{6}\end{aligned}$
2. Suppose we say that the roots of the equation $x^{2}-3 x+2=0$ are α and β then FIND the equation with roots of 3α and 3β.

Firstly $\quad \alpha \beta=2$
and $\alpha+\beta=3$
The equation would be :
$(x-3 \alpha)(x-3 \beta)=0$
Multiplying out, we get:
$x^{2}-3 \alpha x-3 \beta x+9 \alpha \beta=0$
$x^{2}-3(\alpha+\beta) x+9 \alpha \beta=0$
subs $\alpha \beta=2$
and $\alpha+\beta=3$
we get:
$x^{2}-3(3) x+9(2)=0$
$x^{2}-9 x+18=0$$\quad$ Sum $\quad=3 \alpha+3 \beta=92(\alpha+\beta)=9$
3. Suppose we say that the roots of the equation $\boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}=0$ are α and β then FIND the equation with roots of 4α and 4β.

Firstly $\quad \alpha \beta=c$ and $\alpha+\beta=-b$
The equation would be :
$(x-4 \alpha)(x-4 \beta)=0$
Multiplying out, we get:

$$
\begin{aligned}
& x^{2}-4 \alpha x-4 \beta x+16 \alpha \beta=0 \\
& x^{2}-4(\alpha+\beta) x+16 \alpha \beta=0 \\
& \quad \text { subs } \alpha \beta=c \\
& \text { and } \alpha+\beta=-b \\
& \text { we get : } \\
& x^{2}-4(-b) x+16(c)=0 \\
& x^{2}+4 b x+16 c=0
\end{aligned}
$$

Or we just say:
Product $=4 \alpha \times 4 \beta$

$$
\begin{aligned}
& =16 \times \alpha \beta \\
& =\mathbf{1 6} \mathbf{c} \\
\text { Sum } & =4 \alpha+4 \beta \\
& =4(\alpha+\beta) \\
& =-\mathbf{4 b}
\end{aligned}
$$

