PARALLEL ALGEBRA ASSESSMENT ANSWERS

1.(a) Simplify fully: $\quad \frac{\left(x^{2}-x-12\right)}{\left(x^{2}-16\right)}=\frac{(x-4)(x+3)}{(x-4)(x+4)}=\frac{(x+3)}{(x+4)}$
(b) Expand and simplify: $(2 x-5)(x+2)(x-3)$

$$
\begin{aligned}
& =(2 x-5)\left(x^{2}-x-6\right) \\
& =2 x^{3}-2 x^{2}-12 x-5 x^{2}+5 x+30 \\
& =2 x^{3}-7 x^{2}-7 x+30
\end{aligned}
$$

(c) Factorise fully:
(i) $3 x^{2}-3 x-6=3\left(x^{2}-x-2\right)=3(x-2)(x+1)$
(ii) $3 x^{2}-11 x-4=(3 x+1)(x-4)$
(d) (i) Change this equation into the form $a x^{2}+b x+c=0$

$$
\begin{array}{r}
(x-2)(x+1)=2 x+5 \\
x^{2}-x-2-2 x-5=0 \\
x^{2}-3 x-7=0
\end{array}
$$

(ii) Solve the equation in (i) using the quadratic formula and give your answer to 3 sig fig.
$a=1 \quad b=-3 \quad c=-7$
$x=\frac{3 \pm \sqrt{ }(9+4.1 .7)}{2}=\frac{3 \pm \sqrt{ } 37}{2}=4.54$ or -1.54
(e) The equation $2 x^{2}+3 x-(k+2)=0$ has only one real solution. Find k.

Has 1 sol if $\Delta=0$ so $\quad 9+4 \times 2 \times(k+2)=0$

$$
\begin{aligned}
9+8 k+16 & =0 \\
8 k & =-25 \\
k & =-\frac{25}{8}
\end{aligned}
$$

(f) (i) Express $p x^{2}-4 x+p=x^{2}-1$ in the form $a x^{2}+b x+c=0$

$$
\begin{array}{r}
p x^{2}-x^{2}-4 x+p+1=0 \\
(p-1) x^{2}-4 x+(p+1)=0
\end{array}
$$

(ii) Find the possible values of p so that the equation in (i) has real solutions.
Has real solutions (ie 2 real or 1 real) if $\Delta \geq 0$

$$
\begin{aligned}
& 16-4(p-1)(p+1) \geq 0 \\
& 16-4\left(p^{2}-1\right) \geq 0 \\
& 16-4 p^{2}+4 \geq 0 \\
& 20 \geq 4 p^{2} \\
& 5 \geq p^{2} \\
&-\sqrt{ } 5 \leq x \leq \sqrt{ } 5
\end{aligned}
$$

2.(a) Solve for x : $\quad 4(3 x-2)=6-x$

$$
\begin{aligned}
12 x-8 & =6-x \\
13 x & =14 \\
x & =\frac{14}{13}
\end{aligned}
$$

(b) Solve for x : $\quad(x-1)^{2}-2(x+2)+7=0$

$$
\begin{aligned}
x^{2}-2 x+1-2 x-4+7 & =0 \\
x^{2}-4 x+4 & =0 \\
(x-2)^{2} & =0 \\
x & =2
\end{aligned}
$$

(c) Solve for x : $\quad 3 x^{2}=x+2$

$$
\begin{array}{r}
3 x^{2}-x-2=0 \\
(3 x+2)(x-1)=0
\end{array}
$$

$$
x=-2 / 3 \text { or } 1 \quad \text { or on Graph Calc } x=1 \text { or }-0.667
$$

(d) The area of the outside of a cone is given by $A=\pi R L$ where R is the radius of the base and L is the slant height. If $L=R-2$ and the area is 24π, find the values of R and L.

$$
\pi R L=24 \pi
$$

$$
\pi R(R-2)=24 \pi
$$

$$
R(R-2)=24
$$

$$
R^{2}-2 R-24=0
$$

$$
(R-6)(R+4)=0
$$

$R=6$ but $R=-4$ is not valid
Hence $R=6, L=4$
(e) Solve the equation: $\frac{1}{x}+\frac{1}{(x+3)}=\frac{13}{40}$

Mult both sides by 40x(x+3)

$$
\begin{aligned}
40(x+3)+40 x & =13 x(x+3) \\
40 x+120+40 x & =13 x^{2}+39 x \\
0 & =13 x^{2}-41 x-120 \\
0 & =(13 x+24)(x-5) \\
x & =-24 / 13 \text { or } 5
\end{aligned}
$$

on graphic calc $x=5$ or -1.85
3. (a) Factorise $7 x^{2}-4 x+3=(7 x+3)(x-1)$
(b) Solve $7 x^{2}-4 x+3=0$

$$
\begin{gathered}
(7 x+3)(x-1)=0 \\
x=1 \text { or }-7 / 3
\end{gathered}
$$

(c) Find the EXACT solution of the equation:
$x^{2}-8 x=5$ in the form $d \pm \sqrt{ }$ pusing the quadratic formula or by completing the square method

$$
\begin{array}{rlrrl}
x^{2}-8 x+16 & =5+16 & \text { OR } & x^{2}-8 x-5 & =0 \\
(x-4)^{2} & =21 & x & =\frac{8 \pm \sqrt{ }(64+4 \times 1 \times 5)}{2} \\
x-4 & = \pm \sqrt{ } 21 & & & \\
x & =4 \pm \sqrt{ } 21 & x & =\frac{8 \pm \sqrt{ }(84)}{2}
\end{array}
$$

(These answers are equal)
(d) Find what the value of k must be: $\frac{x^{2}-5 x+k}{x^{2}-6 x+8}=\frac{x-3}{x-4}$

$$
\frac{x^{2}-5 x+k}{(x-2)(x-4)}=\frac{x-3}{x-4}
$$

Clearly $(x-2)$ must cancel from the left hand side and leave $(x-3)$ on top. so $(x-2)$ must be a factor of $x^{2}-5 x+k$ and other factor is $(x-3)$ so $(x-2)(x-3)=x^{2}-5 x+6$ ie $k=6$
(e) Bob tries to solve the equation: $\quad \frac{x^{2}-2 x-24}{x^{2}-6 x}=3$

This is his working:

$$
\begin{aligned}
x^{2}-2 x-24 & =3 x^{2}-18 x & & \text { line } 1 \\
0 & =2 x^{2}-16 x+24 & & \text { line } 2 \\
0 & =2\left(x^{2}-8 x+12\right) & & \text { line } 3 \\
0 & =2(x-3)(x-4) & & \text { line } 4 \\
x & =-3 \text { or }-4 & & \text { line } 5
\end{aligned}
$$

(i) Find which lines Bob has made mistakes. LINES 4 and 5
(ii) Explain what the mistakes are.

He factorised wrongly $2\left(x^{2}-8 x+12\right)=2(x-2)(x-6)$ and the solutions from this are $x=2$ or 6
BUT $x=6$ is not valid because of the denominator $x^{2}-6 x=0$ and we cant have 0 on the bottom line of a fraction.
(iii) Suggest another way he could have solved the equation.

Factorising firstly: $\frac{(x+4)(x-6)}{x(x-6)}=3$

$$
\begin{aligned}
x+4 & =3 x \\
4 & =2 x \\
2 & =x
\end{aligned}
$$

But $x \neq 6$ because we cancelled $\frac{(x-6)}{(x-6)}$
(f)

This building has a parabolic cross section with the top chopped off. The distance $A B$ is 20 metres. The distance $P Q$ is 40 metres. The height of $A B$ above the ground $P Q$ is 60 metres.

Find the equation of this parabolic cross section and find how high it would have been if the top were not chopped off.
Equation is of the form $y=c-b x^{2}$
If $x=20, y=0$ so $0=c-400 b$
If $x=10, y=60$ so $60=c-100 b$
Subtracting $\quad 60=300 b$ so $b=1 / 5$
Subs $0=c-\frac{400}{5}=80$
The equation is $y=80-\frac{x^{2}}{5}$
Full height would have been 80 metres.

