IMPORTANT IDEAS FOR ADDITION OF FRACTIONS.

This diagram clearly shows that: $\frac{2}{7}+\frac{3}{7}=\frac{5}{7}$

Clearly, we can add ANY fractions directly, as long as they have the SAME DENOMINATORS.
Consider these examples:
1.
$\underline{5}+\underline{6}$
$17 \quad 17$
$=\frac{11}{17}$
2.
$\frac{a}{c}+\frac{b}{c}$
$=\frac{(a+b)}{c}$
3.

$$
\frac{x+5}{x+7}+\frac{x+3}{x+7}
$$

$$
=\frac{2 x+8}{x+7}
$$

4.

$$
\frac{3 x+4}{x-6}+\frac{5 x-7}{x-6}
$$

$$
=\frac{8 x-3}{x-6}
$$

We can only tell what the sum is when we divide the number line into 12ths :

NOTE : $\frac{1}{3}+\frac{1}{4}=\frac{4}{12}+\frac{3}{12}=\frac{7}{12}$

ADDING FRACTIONS WITH DIFFERENT DENOMINATORS!

 (Clearly, we must make the denominators EQUAL)Consider these examples:
1.
$\frac{1}{3}+\frac{1}{4}$
$=\frac{1}{3}\left[\frac{4}{4}\right]+\frac{1}{4}\left[\frac{3}{3}\right]$ note: multiplying by 1 in the form $\frac{3}{3}$ $\downarrow \quad \downarrow \quad$ means that the fraction is still the same!
$=\frac{4}{12}+\frac{3}{12}=\frac{7}{12}$
2.

$$
\begin{aligned}
& \frac{1}{b}+\frac{1}{c} \\
= & \frac{1}{b} \frac{c}{c}+\frac{1}{c} \frac{b}{b} \\
= & \frac{c+b}{b c}
\end{aligned}
$$

3.

$$
=\frac{a}{b} \frac{c}{c}+\frac{d}{c} \frac{b}{b}
$$

$$
=\frac{a c+d b}{b c}
$$

4.

$$
\begin{aligned}
& \frac{4}{(x+2)} \\
= & +\frac{3}{(x-5)} \\
= & \frac{4 x-20}{(x+2)} \frac{(x-5)}{(x-5)}+\frac{3}{(x-5)(x+2)} \frac{(x+2)}{(x-5)}+\frac{3 x+6}{(x-5)(x+2)} \\
= & \frac{7 x-14}{(x+2)(x-5)}
\end{aligned}
$$

5.

$$
\frac{x+3}{x-5}+\frac{x+4}{x-2}
$$

$$
=\frac{(x+3)}{(x-5)} \frac{(x-2)}{(x-2)}+\frac{(x+4)}{(x-2)} \frac{(x-5)}{(x-5)}
$$

$$
=\frac{\left(x^{2}+x-6\right)}{(x-5)(x-2)}+\frac{\left(x^{2}-x-20\right)}{(x-2)(x-5)}
$$

$$
=\frac{\left(2 x^{2}-26\right)}{(x-5)(x-2)}
$$

