The Norfolk Pine Tree.

The large Norfolk pine tree is 30 metres from the side of the hemispherical dome-house. $\mathrm{AB}=30 \mathrm{~m}$
The diameter of the dome-house is 16 metres.
The tree has grown so much in the last year that it is now just visible from the point E which is on the other side of the dome-house.
The distance DE is not known but the gradient of the "line of sight" from E to the top of the tree F , is $-1 / 2$.
Calculate the height of the Norfolk pine tree.

The Norfolk Pine Tree. ANSWERS

The large Norfolk pine tree is 30 metres from the side of the hemispherical dome-house. $\mathrm{AB}=30 \mathrm{~m}$
The diameter of the dome-house is 16 metres.
The tree has grown so much in the last year that it is now just visible from the point E which is on the other side of the dome-house.
The distance DE is not known but the gradient of the "line of sight" from E to the top of the tree F , is $-1 / 2$.
Calculate the height of the Norfolk pine tree.
The line $F E$ will be a tangent to the dome-house.
The equation will be $y=-1 / 2 x+c$
The equation of the dome-house is $x^{2}+y^{2}=64$
Solving simultaneously: $\quad x^{2}+(-1 / 2 x+c)^{2}=64$

$$
\begin{aligned}
x^{2}+\frac{x^{2}}{4}-c x+c^{2} & =64 \\
4 x^{2}+x^{2}-4 c x+4 c^{2} & =256 \\
5 x^{2}-4 c x+\left(4 c^{2}-256\right) & =0
\end{aligned}
$$

For the line of sight to be a tangent) = 0 so there is only 1 solution.

$$
\begin{aligned}
16 c^{2}-4 \times 5 \times\left(4 c^{2}-256\right) & =0 \\
16 c^{2}-80 c^{2}+5120 & =0 \\
5120 & =64 c^{2} \\
c^{2} & =80 \\
c & =8.94
\end{aligned}
$$

(the negative answer refers to the tangent to the whole circle underground!)
The equation of FE is $y=-1 / 2 x+8.94$
The value of x at A is $x=-38$ so substituting:
The height of the tree is $y=-1 / 2 \times-38+8.94$

$$
=27.94 \text { metres }
$$

