MAXIMUM PROBLEMS in Realistic Contexts.

1. A cinema manager finds that when the price of a ticket is $\$ 12$, she gets an audience of 100 people (on average) but for every $\$ 1$ increase the number of people goes down by 10 .
Use calculus to find what ticket price produces the most profit.
If x represents the ticket price and y represents the amount of money collected
then $y=x(320-10 x)$
$y=320 x-10 x^{2}$
$y^{\prime}=320-20 x=0$ for max value
$x=\frac{320}{20}=16$ ie $\$ 16$ per ticket and $y=\$ 2560$ collected
2. When the cost of a bag of potatoes is $\$ 5$ a supermarket sells 40 bags a day.

For every $\$ 1$ increase in price they sell 4 bags a day less.
Use calculus to find what price per bag produces the most money collected.
If \boldsymbol{x} represents the price per bag and \boldsymbol{y} represents the amount of money
collected then $y=x(60-4 x)$

$$
\begin{aligned}
& y=60 x-4 x^{2} \\
& y^{\prime}=60-8 x=0 \text { for max value } \\
& x=\frac{60}{8}=7.5 \text { ie } \$ 7.50 \text { per bag and } y=\$ 225 \text { collected }
\end{aligned}
$$

3. When the cost of a bag of kumara is $\$ 5$ a supermarket sells 30 bags a day.

For every $\$ 1$ increase in price they sell 4 bags a day less.
Use calculus to find what price per bag produces the most money collected.
If \boldsymbol{x} represents the price per bag and \boldsymbol{y} represents the amount of money
collected then $y=x(50-4 x)$
$y=50 x-4 x^{2}$
$y^{\prime}=50-8 x=0$ for max value
$x=\frac{50}{8}=6.25$ ie $\$ 6.25$ per bag and $y=\$ 156.25$ collected
4. A dairy farmer notices that the average amount of milk per cow is 14 litres a day when he puts 30 cows in his paddock, however, for every 5 cows added, the average amount of milk goes down by 1 litre a day.
Use calculus to find how many cows he should put in the paddock to get the most milk and find the maximum amount of milk he could get.
If x represents the number of cows and y represents the total amount of milk produced in litres then $y=x\left(20-\frac{x}{5}\right)$
$y=20 x-\frac{x^{2}}{5}$
$y^{\prime}=20-\frac{2 x}{5}=0$ for max value

$$
20=\frac{2 x}{5} \text { so } x=50 \text { cows/paddock so } y=500 \text { L/day }
$$

