YEAR 12 OUADRATIC THEORY

1(a) Solve by factorising :
$x^{2}+5 x-14=0$
(b) Solve by using the method called "completing the square" and show each step clearly.
$x^{2}+8 x=33$
2. Given $a x^{2}+b x+c=0$
then $x=\frac{-b \pm \sqrt{ }\left(b^{2}-4 a c\right)}{2 a}$
Use the quadratic formula to solve these equations and give your solutions to 2 dec pl.
(a) $3 x^{2}+9 x+5=0$
(b) $5 x^{2}-7 x-11=0$
3. Show clearly how to solve each of the following 4 equations using the quadratic formula (even though 2 of them factorise)
(a) $x^{2}-8 x+7=0$
(b) $x^{2}-8 x+16=0$
(c) $x^{2}-8 x+5=0$
(d) $x^{2}-8 x+20=0$
4. The Discriminant is $\boldsymbol{\Delta}=\boldsymbol{b}^{2}-\mathbf{4 a}$. State what type of solutions you get if the discriminant is :
(a) 0
(b) 36
(c) -9
(d) 3
(e) 1

Use the discriminant in the following questions and show clear reasoning in your working.
5. Find \boldsymbol{c} so that $\boldsymbol{x}^{2}-\mathbf{1 2 x} \boldsymbol{x}=\boldsymbol{0}$ has 1 rational solution.
6. Find the range of values of \boldsymbol{p} so that $\boldsymbol{x}^{2}-\mathbf{1 0 x}+\boldsymbol{p}=\mathbf{0}$ has no real solutions.
7. Find n so that $2 x^{2}+n x+8=0$ has only one rational solution.
8. Find k so that $\boldsymbol{x}^{2}+\boldsymbol{k} \boldsymbol{x}+(\boldsymbol{k}+3)=\mathbf{0}$ has only one rational solution.
9. Find \boldsymbol{p} so that $\boldsymbol{x}^{2}+(p+2) x+(3 \boldsymbol{p}-2)=0$ has only one rational solution.
10. Find d if $x^{2}+(d+3) x+3 d+1=0$ has only one rational solution.
11. Find the range of values of \boldsymbol{K} so that $x^{2}-8 x+K=0$ has no real solutions.
12. Find the range of values of \boldsymbol{b} so that $\boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{9}=\mathbf{0}$ has no real solutions.
13. Find the range of values of \boldsymbol{n} so that $x^{2}+(n+2) x+(n+5)=0$ has 2 real solutions.
14. Find the range of values of \boldsymbol{p} so that $\boldsymbol{x}^{2}+(p-1) x+p+2=0$ has no real solutions.
15. Find k so that the equation

$$
x^{2}+2(k-2) x+\left(k^{2}-k-5\right)=0
$$

has only one rational solution.

YEAR 12 QUADRATIC THEORY.

1(a) Solve by factorising :

$$
x^{2}+5 x-14=0
$$

(b) Solve by using the method called "completing the square" and show each step clearly.

$$
x^{2}+8 x=33
$$

2. Given $a x^{2}+b x+c=0$ then $x=\frac{-b \pm \sqrt{ }\left(b^{2}-4 a c\right)}{2 a}$
Use the quadratic formula to solve these equations and give your solutions to 2 dec pl.
(a) $3 x^{2}+9 x+5=0$
(b) $5 x^{2}-7 x-11=0$
3. Show clearly how to solve each of the following 4 equations using the quadratic formula (even though 2 of them factorise) (a) $x^{2}-8 x+7=0$
(b) $x^{2}-8 x+16=0$
(c) $x^{2}-8 x+5=0$
(d) $x^{2}-8 x+20=0$
4. The Discriminant is $\boldsymbol{\Delta}=\boldsymbol{b}^{2}-4 \boldsymbol{a} \boldsymbol{c}$. State what type of solutions you get if the discriminant is :
(a) 0
(b) 36
(c) -9
(d) 3
(e) 1

Use the discriminant in the following questions and show clear reasoning in your working.
5. Find c so that $\boldsymbol{x}^{2}-\mathbf{1 2 x} \boldsymbol{x}=\boldsymbol{0}$ has 1 rational solution.
6. Find the range of values of p so that $\boldsymbol{x}^{2}-\mathbf{1 0 x}+\boldsymbol{p}=\mathbf{0}$ has no real solutions.
7. Find n so that $2 x^{2}+n x+8=0$ has only 12 . Find the range of values of \boldsymbol{b} so that one rational solution. $x^{2}+b x+9=0$ has no real solutions.
8. Find \boldsymbol{k} so that $\boldsymbol{x}^{2}+\boldsymbol{k} \boldsymbol{x}+(\boldsymbol{k}+3)=0$ has only one rational solution.
9. Find p so that $x^{2}+(p+2) x+(3 p-2)=0$ has only one rational solution.
10. Find d if $\boldsymbol{x}^{2}+(d+3) x+3 d+1=0$ has only one rational solution.
11. Find the range of values of \boldsymbol{K} so that $x^{2}-8 x+K=0$ has no real solutions.
14. Find the range of values of p so that $x^{2}+(p-1) x+p+2=0$ has no real solutions.
15. Find k so that the equation

$$
x^{2}+2(k-2) x+\left(k^{2}-k-5\right)=0
$$

has only one rational solution.

