UNDERSTANDING DISCRIMINANT AT A GLANCE.
(with solutions)
If ax2 + bx + c = 0  then x =  – b ± √ (b2 – 4ac)

                                                             2a

The discriminant is  b2 – 4ac
	1.
x² – 8x + 7 = 0

x = 
[image: image1.wmf]2
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     x  = 1 and 7
Sketch the graph of

 y = x² – 8x + 7
                                          

            1             7
        Δ  > 0

TWO solutions

	2.
x² – 8x + 16 = 0

x = 
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x = 4
Sketch the graph of

y = x² – 8x + 16
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        Δ = 0
ONE solution


	3.
x² – 8x + 20 = 0


x = 
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x = no real solutions 

Sketch the graph of

y = x² – 8x + 20 = 0


   Δ <  0
NO real solutions
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WORKED EXAMPLES.
1(a). Find the value of K so that 

   x2 – 8x + K = 0  has one real solutions.


Δ = 64 – 4K = 0

               64 =  4k  
               16  =   k 
1(b). Find the values of K so that 

   x2 – 8x + K = 0  has no real solutions.


Δ = 64 – 4K < 0

               64 < 4k  
               16  <  k 

1(c). Find the values of K so that 

   x2 – 8x + K = 0  has 2 real solutions.

Δ = 64 – 4K > 0

               64 >4k  
               16  >  k 

2. Find the range of values of b so that 

   x2 + bx + 9 = 0  has no real solutions.

Δ = b2 – 36 < 0

              b2 < 36

    b < +6  or b >  – 6 

can be written as    – 6 < b < 6 

3. Find the range of values of n so that 

   x2 +(n + 2)x + (n + 5) = 0  
    has 2 real  solutions.
Δ = (n + 2)2 – 4(n + 5) > 0

n2 + 4n + 4 – 4n – 20  > 0

                 n2 – 16       > 0

                        n2        >  16

so  n > 4  or  n <  – 4 

4. Find the range of values of p so that 

   x2 + (p – 1)x + (p + 2) = 0  has no real 

   solutions.

Δ = (p – 1)2 – 4(p + 2) < 0

    p2 – 2p + 1 – 4p – 8 < 0

                   p2 – 6p – 7 < 0

  Δ =    (p – 7)(p + 1)   < 0 


  So    – 1 < p < 7       
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