
Y12: PRACTICE ASSESSMENT A. MERIT LEVEL ONLY.

Algebra.

The pond is 3m by 4m

The width of the garden is the same right round the pool.

The total area of the garden is 32 m² Find the width x of the garden to 3 sig fig.

$$(2x+4)(2x+3) - 12 = 32$$

$$4x^{2} + 14x + 12 - 12 = 32$$

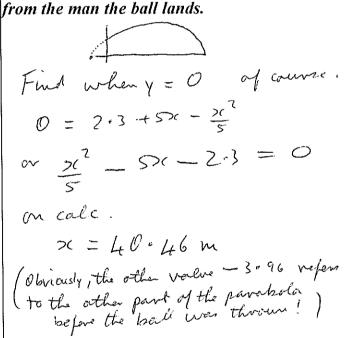
$$4x^{2} + 14x - 32 = 0$$

$$x = 1.58 \quad \text{or} \quad -5.08$$
but x cannot be -5.08 !

The only valid answer
is $x = 1.58$ in

3. If I deposit \$3000 for n years at 6% compound interest, find how many whole years it will take to more than double my money by solving:

$$3000(1.06)^{n} = 6000$$


$$(1.06)^{n} = 2$$

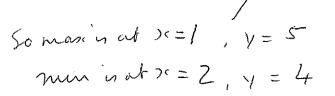
$$\log(1.06)^{n} = \log 2$$

$$\log(1.06) = \log(1.06)$$

$$\log(1$$

5. A man throws a cricket ball and the equation of its path is $y = 2.3 + 5x - x^2/5$ where y is the height and x is the horizontal distance travelled in metres. Find how far

Calculus.


1. Find the turning points of the curve:

$$y = 2x^3 - 9x^2 + 12x$$

and determine their nature. grad y 1 = 6 x 2 - 18 x + 12 = 0 at mar/min

$$6(x^2-3x+2)=0$$

$$(3(-1)(x-2)=0$$
Cubis is this shape

2. The height H metre of a metal ball shot into the air at t sec is given by:

$$H = 80t - 5t^2$$

(a) Find t when the ball is at its highest.

$$\frac{dH}{dt} = 80 - 10t = 0 \text{ at higher}$$

$$50 t = 8 \text{ sec}.$$

(b) Find the greatest height the ball reaches

sub t=8 ,
$$H = 80 \times 8 - 5 \times 8^{1} = 320 \text{ m}$$

(c) Find at what times the ball is at a height

240 = 80t - St? 5t2-80+ +240 = 0

t = 4 and 12

(d) Find to 2 sig figs the times when the ball

is at a height of 260 metres.

260 = 80t - St'

3. If $y' = -3x^2 + 18x$ find y if y = 4 when x = 2

$$Y = -x^{3} + 9x^{2} + C$$
Sub $4 = -8 + 36 + C$

$$4 = 28 + c$$

$$-24 = c$$

$$y = -x^{3} + 9x^{3} - 24$$

- 4. The velocity of a boomerang v at t sec is v = 30 - 6t
- (a) Find the initial velocity with which the Sub t=0, V=30 m/s boomerang was thrown.

(b) At what time was it at its maximum distance away?

(c) If x is the distance from the thrower find

the maximum distance it goes.

$$v = \frac{dx}{dt} = 30-6t$$
 $x = 30t - 3t^{2} + c$
 $x = 30 + 5$
 $x = 30 + 5$
 $x = 30 + 5$
 $x = 30 + 5$

$$\int_{x=30}^{x=30} x = 30t - 3t^{2}$$

$$= x = 30 \times 5 - 3 \times 5^{2}$$

$$= 75 \text{ m}$$