<u>YEAR 12 U</u>	<u>JNDERSTA</u>	<u>INDING LOGA</u>	<u>ARITHMS - SOLUTIONS.</u>
"Log" just means Index or			
power or exponent.	(c) $\log_4 64 =$	= X	,
power of exponent.	$so 4^x = 64$		The graphs are:
1. Consider $2^3 = 8$	x = 3		
((d) $\log_{6} 6 =$	= X	
the index $= 3$	so $6^x = 6$		
	x = 1		
ie the Log = 3	(e) $\log_3 1 =$	X	
or in full $\text{Log}_2 8 = 3$	so $3^x = 1$		$ - / / \rightarrow$
()	$\begin{array}{c} x = 0 \end{array}$		
2. Write in log form as		2) _ v	
shown above.	(f) $\log_2 (1/8)$		
	so 2 ^x		
(a) $4^2 = 16 \ \log_4 16 = 2$		8	Notice that $y = \log_2 x$ is a
	X	x = -3	reflection of $y = 2^x$ in the line y
(b) $2^5 = 32$ log ₂ 32 = 5			= x.
	(g) $\log_2 (1/3)$	32) = x	Also notice:
	so $2^x = 1$		$\log_2(0)$ does not exist
(c) $\mathbf{p}^{v} = \mathbf{n}$ $log_p \mathbf{n} = \mathbf{v}$	$30^{\circ} 2^{\circ} - \frac{1}{32}$		
		_	
3. Change back to index form:		z = -5	and $\log_2(-b)$ does not exist
$eg \log_{2} 16 = 4$	(h) $\log_{b} b =$	= X	because the graph does not
$so \qquad 2^4 = 16$	$so b^x = b$		have any points on the left of
	x = 1		the y axis.
(a) $\log_3 81 = 4$	(i) $\log_{b} 1 = 2$	X	Our calculators only have
$3^4 = 81$	so $b^x = 1$		-
(b) $\log_4 64 = 3$	$\begin{array}{c} x = 0 \end{array}$		log values to the base 10 and e.
$4^3 = 64$		2 • X	ie $\log_{10} = \log_{10}$
	5. The graphs of $y = 2^x$		and $\log_{e} = \ln$ (only used in Y13)
(c) $\log_{b} p = w$	and $y = \log_2$	x are very closely	7
$\boldsymbol{b}^w = \boldsymbol{p}$	related:		Use your calculator to find
4. Find by logical thinking not	Find x, y va	lues for each:	1. $\log_{10} 8 = 0.9031$
by using a calculator.	/ 5		210
eg $\log_9 81 = x$	$y = 2^x$	$y = \log_2 x$	2. $\log_{10} 80 = 1.9031$
$so 9^x = 81$	y - 2	$\mathbf{y} = \log_2 \mathbf{x}$	2. $\log_{10} 00^{\circ} = 1.7031^{\circ}$
		1	
so $\mathbf{x} = 2$	x y	x y	3. If $\log_{10} x = 2.5$
	1 2	1 0	<i>then</i> $10^{2.5} = x$
(a) $\log_2 64 = x$	2 4	2 1	so $x = 316.23$
	3 8	$\begin{array}{c c} 2 & 1 \\ 4 & 2 \end{array}$	4. Find x
so $2^x = 64$	4 16	8 3	(a) $\log_{10} x = 3.1$
x = 6	-1 .5	16 4	$10^{3.1} = x$
(b) $\log_8 64 = x$			
(0) 105 8 04 - A			so x = 1258.93
	-3 .125	¹ / ₄ -2	(b) $\log_{10} 3x = 1.5$
so $8^x = 64$	-4 .0625	1/8 -3	$10^{1.5} = 3 x$
x = 2	0 1	1/32 -4	3x=31.62 $x=10.54$
	I	I	

YEAR 12 UNDERSTANDING LOGARITHMS - SOLUTIONS.

 $\log_{10} x = 3.4$ (c) so $10^{3.4} = x$ x = 2511.89(d) $\log_{10} 5x = 1.6$ so $10^{1.6} = 5 x$ 5x = 39.811 x = 7.962 $10^{x} = 4.1$ (e) so $\log_{10} 4.1 = x$ x = 0.6128 $10^{2x} = 54.2$ (f) so $\log_{10} 54.2 = 2x$ 2x = 1.734x = 0.867 $10^{x} = 2.4$ (g) so $\log_{10} 2.4 = x$ x = 0.3802 $10^{\rm x} = 0.7$ (h) so $\log_{10} 0.7 = x$ x = -0.1549(i) $10^{5x} = 4.7$ so $\log_{10} 4.7 = 5x$ 5x = 0.6721x = 0.1344(j) $\log_{10} (x+2) = 0.345$ so $\log_{10} 0.345 = x + 2$ x + 2 = -0.4622x = -2.4633(k) $\log_{10} (x-4) = 0.3$ so $\log_{10} 0.3 = x - 4$ x - 4 = -0.5229(1) $10^{2x-4} = 1.3$ so $\log_{10} 1.3 = 2 x - 4$ 2x - 4 = 0.1139(m) $10^{4x+1} = 86$ so $\log_{10} 86 = 4x + 1$ 4x + 1 = 1.9345x = 0.2336

The THREE LOG LAWS. (d) $\log av = \log av - \log bw$ 1. $\log(xy) = \log x + \log y$ bw This means that when you $= \log a + \log v - \log b - \log w$ multiply 2 numbers you add (e) $\log \frac{a c^5}{b^3 n^2} = \log a c^5 - \log b^3 n^2$ the indices (ie logs) $2 \log \left[\frac{x}{y} \right] = \log x - \log y$ $= \log a + \log c^5 - (\log b^3 + \log n^2)$ $=\log a + 5\log c - 3\log b - 2\log n$ This means that when you divide 2 numbers you subtract Combine these into one log the indices (logs) function. $\log \log 3 + \log 5 = \log 15$ 3. $\log x^n = n \log x$ (a) $\log 6 - \log 2 = \log 3$ This is just an extension of law 1 and becomes more (b) $\log 5 + \log 7 = \log 35$ meaningful when we consider: (c) $\log 12 - \log 4 = \log 3$ $\log x^3 = \log x \cdot x \cdot x$ $= \log x + \log x + \log x$ (d) $\log 7 - \log 8 = \log (7/8)$ $= 3 \log x$ (e) $4 \log 2 + 2 \log 3$ $= \log(2^4.3^2) = \log 144$ 1.Using these laws, expand these: eg The way to find $\log_3 14$ is $\log a^4 b^3 = \log a^4 + \log b^3$ $= 4 \log a + 3 \log b$ let $x = \log_3 14$ so $3^x = 14$ (a) $\log c^5 d^6 = \log c^5 + \log d^6$ then $\log_{10} 3^x = \log_{10} 14$ $= 5 \log c + 6 \log d$ so $x \log_{10} 3 = \log_{10} 14$ so $x = \log_{10} 14$ $\log_{10} 3$ Find: (a) $x = \log_4 15$ (b) $\log p^{2}$ $4^{x} = 15$ $x \log_{10} 4 = \log_{10} 15$ $x = \log_{10} \frac{15}{\log_{10} 4} = 1.9534$ $= \log p^5 - \log v^4$ (b) $x = \log_5 60$ $= 5\log p - 4\log v$ $5^{x} = 60 \quad x \log_{10} 5 = \log_{10} 60$ (c) $\log ab$ $x = \log_{10}60 / \log_{10}5 \quad x = 2.544$ C (c) $x = \log_7 343$ $= \log a + \log b - \log c$ $x = \log_{10} \frac{343}{\log_{10} 7}$ x = 3