YEAR 12 UNDERSTANDING LOGARITHMS - SOLUTIONS.

"Log" just means Index or power or exponent.

1. Consider $2^{3}=8$
$\left\{\begin{array}{r}\text { the index }=3 \\ \text { ie the } \log =3 \\ \text { or in full } \log _{2} 8=3\end{array}\right\}$
2. Write in \log form as shown above.
(a) $4^{2}=16 \quad \log _{4} 16=2$
(b) $2^{5}=32 \quad \log _{2} 32=5$
(c) $\mathrm{p}^{\mathrm{v}}=\mathrm{n} \quad \log _{p} n=v$
3.Change back to index form:
eg $\log _{2} 16=4$
so $\quad 2^{4}=16$
(a) $\log _{3} 81=4$

$$
3^{4}=81
$$

(b) $\log _{4} 64=3$

$$
4^{3}=64
$$

(c) $\log _{\mathrm{b}} \mathrm{p}=\mathrm{w}$

$$
b^{w}=p
$$

4. Find by logical thinking not by using a calculator.
eg $\log _{9} 81=x$

$$
\text { so } \quad 9^{x}=81
$$

so $\quad \mathrm{x}=2$
(a) $\log _{2} 64=x$

$$
\text { so } \quad 2^{x}=64
$$

$$
x=6
$$

(b) $\log _{8} 64=x$

$$
\text { so } \quad \begin{aligned}
& 8^{x}=64 \\
& \\
& x=2
\end{aligned}
$$

(c) $\log _{4} 64=x$
so $\quad 4^{x}=64$

$$
x=3
$$

(d) $\log _{6} 6=x$
so $\quad 6^{x}=6$
$x=1$
(e) $\log _{3} 1=x$
so $\quad 3^{x}=1$

$$
x=0
$$

(f) $\log _{2}(1 / 8)=x$

$$
\begin{aligned}
\text { So } 2^{x} & =\frac{1}{8} \\
x & =-3
\end{aligned}
$$

(g) $\log _{2}(1 / 32)=x$
so $2^{x}=\frac{1}{32}$
(h) $\log _{\mathrm{b}} \mathrm{b}=\mathrm{x}$
so $\quad b^{x}=b$

$$
x=1
$$

(i) $\log _{b} 1=x$
so $\quad b^{x}=1$
5. The graphs of $y=2^{x}$ and $\mathrm{y}=\log _{2} \mathrm{x}$ are very closely related:
Find x , y values for each:

$\mathrm{y}=$		$\mathrm{y}=1$	$\mathrm{g}_{2} \mathrm{X}$
x	y	x	y
1	2	1	0
2	4	2	1
3	8	4	2
4	16	8	3
-1	. 5	16	4
-2	. 25	1/2	-1
-3	. 125	1/4	-2
-4	. 0625	1/8	-3
0	1	1/32	-4

The graphs are:

Notice that $\mathrm{y}=\log _{2} \mathrm{x}$ is a reflection of $y=2^{x}$ in the line y $=\mathrm{x}$.
Also notice:
$\log _{2}(0)$ does not exist
and $\log _{2}(-\mathrm{b})$ does not exist because the graph does not have any points on the left of the y axis.
Our calculators only have
\log values to the base 10 and e.
ie $\log _{10}=\log$
and $\log _{\mathrm{e}}=\ln$ (only used in Y13)
Use your calculator to find

1. $\log _{10} 8=\mathbf{0 . 9 0 3 1}$
2. $\log _{10} 80=1.9031$
3. If $\quad \log _{10} x=2.5$

$$
\begin{aligned}
\text { then } 10^{2.5} & =x \\
\text { so } x & =316.23
\end{aligned}
$$

4. Find x
(a) $\log _{10} \mathrm{x}=3.1$

$$
\begin{aligned}
& 10^{3.1}=x \\
& \text { so } x=1258.93
\end{aligned}
$$

(b) $\log _{10} 3 x=1.5$

$$
\begin{aligned}
10^{1.5} & =3 x \\
3 x & =31.62 \quad x=10.54
\end{aligned}
$$

(c) $\quad \log _{10} \mathrm{x}=3.4$
so $10^{3.4}=x$
$x=2511.89$
(d) $\log _{10} 5 \mathrm{x}=1.6$
so $10^{1.6}=5 x$ $5 x=39.811 \quad x=7.962$
(e) $\quad 10^{x}=4.1$
so $\log _{10} 4.1=x$

$$
x=0.6128
$$

(f) $\quad 10^{2 x}=54.2$
so $\log _{10} 54.2=2 x$

$$
\begin{gathered}
2 x=1.734 \\
x=0.867
\end{gathered}
$$

(g)

$$
10^{x}=2.4
$$

so $\log _{10} 2.4=x$

$$
x=0.3802
$$

(h) $\quad 10^{x}=0.7$
so $\log _{10} 0.7=x$

$$
x=-0.1549
$$

(i) $10^{5 \mathrm{x}}=4.7$
so $\log _{10} 4.7=5 x$

$$
\begin{gathered}
5 x=0.6721 \\
x=0.1344
\end{gathered}
$$

(j) $\quad \log _{10}(x+2)=0.345$
so $\log _{10} 0.345=x+2$

$$
\begin{aligned}
x+2 & =-0.4622 \\
x & =-2.4633
\end{aligned}
$$

(k) $\log _{10}(x-4)=0.3$
so $\log _{10} 0.3=x-4$

$$
x-4=-0.5229
$$

$$
x=3.4771
$$

(l) $10^{2 x-4}=1.3$
so $\log _{10} 1.3=2 x-4$

$$
2 x-4=0.1139
$$

$$
x=2.0570
$$

(m) $10^{4 \mathrm{x}+1}=86$
so $\log _{10} 86=4 x+1$

$$
\begin{gathered}
4 x+1=1.9345 \\
x=0.2336
\end{gathered}
$$

The THREE LOG LAWS.

1. $\log (x y)=\log x+\log y$

This means that when you multiply 2 numbers you add the indices (ie logs)
$2 \log \left[\frac{x}{y}\right]=\log x-\log y$

This means that when you divide 2 numbers you subtract the indices (logs)
3. $\log x^{n}=n \log x$

This is just an extension of law 1 and becomes more meaningful when we consider:

$$
\begin{aligned}
& \log x^{3}=\log x \cdot x \cdot x \\
& \quad=\log x+\log x+\log x \\
& \quad=3 \log x
\end{aligned}
$$

1.Using these laws, expand these:
eg

$$
\begin{aligned}
\log a^{4} b^{3} & =\log a^{4}+\log b^{3} \\
& =4 \log a+3 \log b
\end{aligned}
$$

(a) $\log c^{5} d^{6}=\log c^{5}+\log d^{6}$

$$
=5 \log c+6 \log d
$$

(b) $\log \frac{\mathrm{p}^{5}}{\mathrm{v}^{4}}$

$$
=\log p^{5}-\log v^{4}
$$

$$
=5 \log p-4 \log v
$$

(c) $\log \underline{a b}$
c
$=\log \mathrm{a}+\log \mathrm{b}-\log \mathrm{c}$
(d) $\log \frac{\mathrm{av}}{\mathrm{bw}}=\log \mathrm{av}-\log \mathrm{bw}$
$=\log a+\log v-\log b-\log w$
(e) $\log \frac{a c^{5}}{b^{3} n^{2}}=\log a c^{5}-\log b^{3} n^{2}$
$=\log \mathrm{a}+\log \mathrm{c}^{5}-\left(\log \mathrm{b}^{3}+\log n^{2}\right)$
$=\log a+5 \log c-3 \log b-2 \log n$
Combine these into one log function.
eg $\log 3+\log 5=\log 15$
(a) $\log 6-\log 2=\log 3$
(b) $\log 5+\log 7=\log 35$
(c) $\log 12-\log 4=\log 3$
(d) $\log 7-\log 8=\log (7 / 8)$
(e) $4 \log 2+2 \log 3$

$$
=\log \left(2^{4} \cdot 3^{2}\right)=\log 144
$$

The way to find $\log _{3} 14$ is

$$
\begin{aligned}
\text { let } x & =\log _{3} 14 \\
\text { so } 3^{x} & =14 \\
\text { then } \log _{10} 3^{x} & =\log _{10} 14 \\
\text { so } x \log _{10} 3 & =\log _{10} 14 \\
\text { so } x & =\log _{10} \underline{14} \\
&
\end{aligned}
$$

Find:
(a) $x=\log _{4} 15$
$4^{x}=15 \quad x \log _{10} 4=\log _{10} 15$
$x=\log _{10} 15 / \log _{10} 4=1.9534$
(b) $\mathrm{x}=\log _{5} 60$
$5^{x}=60 \quad x \log _{10} 5=\log _{10} 60$
$x=\log _{10} 60 / \log _{10} 5 \quad x=2.544$
(c) $x=\log _{7} 343$
$x=\log _{10} 343 / \log _{10} 7 x=3$

