LEVEL 2 ANTIDIFFERENTIATION ANSWERS

1. Find the equation of the curve which passes through the point $(2,9)$ and whose gradient is dy $=2 x-5$

$$
y=x^{2}-5 x+15
$$

2. Find the equation of the curve $y=f(x)$ if the gradient is

$$
y^{\prime}=6 x^{2}+8 x-7 \text { and }
$$

when $x=1, y=5$
$y=2 x^{3}+4 x^{2}-7 x+6$
3. Find the equation of the curve $y=f(x)$ if the gradient is $\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{x}^{4}$ and $f(1)=0$.
(ie when $\mathrm{x}=1, \mathrm{y}=0$)

$$
y=\frac{1}{5} x^{5}-\frac{1}{5}
$$

4. Find the equation of the curve whose gradient function is $\underline{d y}=x-x^{2}$ dx
and when $\mathrm{x}=1, \mathrm{y}=1$

$$
y=\frac{1}{2} x^{2}-\frac{1}{3} x^{3}+\frac{5}{6}
$$

5(a) If the distance of a car from O is $x=6 t^{2}+2 t+1$ find the velocity equation
ie $v=\frac{d x}{d t}=12 t+2$
and find the acceleration equation.
ie $a=\frac{d v}{d t}=12$
(b) The acceleration of a car is $\mathrm{a}=\frac{\mathrm{dv}}{\mathrm{dt}}=6 \mathrm{t}+1$
(i) Find the Velocity equation given that $\mathrm{v}=4 \mathrm{~m} / \mathrm{s}$ when $\mathrm{t}=0$

$$
v=3 t^{2}+t+4
$$

(ii) Find the displacement equation (ie distance equ) given that when $\mathrm{t}=0$ the distance from O is $\mathrm{x}=2 \mathrm{~m}$
$x=t^{3}+\frac{1}{2} t^{2}+4 t+2$
6. $\mathrm{f}^{\prime}(\mathrm{x})=6 \mathrm{x}-12 \mathrm{x}^{2}$ and the curve passes through the point $(2,4)$. Find the equation of the curve $y=f(x)$

$$
f(x)=3 x^{2}-4 x^{3}+24
$$

7. Find the antiderivatives.
(a) $\frac{d y}{d x}=4 x^{3}-7 x$
$=x^{4}-\frac{7}{2} x^{2}+c$
(b) $\frac{d y}{d x}=\frac{3 x}{2}+\frac{5 x^{2}}{4}$

$$
=\frac{3}{4} x^{2}+\frac{5}{12} x^{3}+c
$$

8. (a) The acceleration of an object moving in a line is $\quad \mathrm{a}=6 \mathrm{t}-4$
At $t=0$, the object is at O moving with a velocity of $\mathrm{v}=1 \mathrm{~ms}^{-1}$
Find the velocity equation at time t sec

$$
v=3 t^{2}-4 t+1
$$

(b) Find at what times the velocity becomes zero.
$t=\frac{1}{3}, 1$ seconds

