UNDERSTANDING LOGARITHMS.

"Log" just means Index or power or exponent.

2. Write in log form as shown above.
(a) $4^{2}=16$
(b) $2^{5}=32$
(c) $\mathrm{p}^{\mathrm{v}}=\mathrm{n}$
3.Change back to index form: eg $\log _{2} 16=4$
so $\quad 2^{4}=16$
(a) $\log _{3} 81=4$
(b) $\log _{4} 64=3$
(c) $\log _{\mathrm{b}} \mathrm{p}=\mathrm{w}$
4. Find by logical thinking not by using a calculator.
eg $\log , 81=x$
so $9^{x}=81$
so $\quad x=2$
(a) $\log _{2} 64=x$
(b) $\log _{8} 64=x$
(c) $\log _{4} 64=x$
(d) $\log _{6} 6=x$
(e) $\log _{3} 1=x$

$$
\text { (f) } \begin{aligned}
\log _{2}(1 / 8) & =x \\
\text { so } 2^{x} & =\frac{1}{8} \\
x & =-3
\end{aligned}
$$

(g) $\log _{2}(1 / 32)=x$
(h) $\log _{b} b$
(i) $\log _{b} 1$
5. The graphs of $y=2^{x}$ and $y=\log _{2} x$ are very closely related:
Find x, y values for each:

| $y=2^{x}$ | $y=\log _{2} x$ | | |
| :--- | :--- | :--- | :--- | :--- |
| x | y | x | y |
| 1 | | 1 | |
| 2 | | 2 | |
| 3 | 8 | 4 | |
| 4 | | 8 | 3 |
| -1 | | 16 | |
| -2 | | $1 / 2$ | |
| -3 | | $1 / 4$ | |
| -4 | | $1 / 8$ | |
| 0 | | $1 / 32$ | |

Notice that $y=\log _{2} x$ is a reflection of $y=2^{x}$ in the line $y=x$.
Also notice:
$\log _{2}(0)$ does not exist
and $\log _{2}(-\mathbf{b})$ does not exist because the graph does not have any points on the left of the y axis.
Our calculators only have \log values to the base 10 and e.
ie $\log _{10}=\log$
and $\log _{\mathrm{e}}=\ln$ (used later in Y13)
Use your calculator to find

1. $\log _{10} 8=$
2. $\log _{10} 80=$
3. If $\quad \log _{10} x=2.5$
then $10^{2.5}=x$
so $x=$
4. Find x
(a) $\log _{10} x=3.1$
(b) $\log _{10} 3 x=1.5$

