UNDERSTANDING LOGARITHMS.

"<u>Log</u>" just means <u>Index</u> or power or exponent.

1. Consider $2^3 = 8$

the index = 3 ie the Log = 3 or in full Log $_2 8 = 3$

- 2. Write in log form as shown above.
- (a) $4^2 = 16$
- (b) $2^5 = 32$
- (c) $p^v = n$
- 3. Change back to index form: eg $\log_2 16 = 4$

$$so^{2^4} = 16$$

- (a) $\log_3 81 = 4$
- (b) $\log_{4} 64 = 3$
- (c) $\log_b p = w$
- 4. Find by logical thinking not by using a calculator.

eg
$$log g 81 = x$$

so
$$9^x = 81$$

so
$$x = 2$$

- (a) $log_2 64 = x$
- (b) $\log_{8} 64 = x$

$$(c) \log_4 64 = x$$

$$(d) \log_6 6 = x$$

$$(e) \log_3 1 = x$$

(f)
$$\log_2 (1/8) = x$$

so $2^x = \frac{1}{8}$
 $x = -3$

$$(g) \log_2(1/32) = x$$

- $(h) \log_b b$
- (i) $\log_b 1$
- 5. The graphs of $y = 2^x$ and $y = log_2 x$ are very closely related:

Find *x*, *y* values for each:

$$y = 2^x y = log_2 x$$

\boldsymbol{x}	y	\boldsymbol{x}	у
1		1	
2		2	
2 3 4	8	2 4 8	
4		8	3
-1		16	
-2		1/2	
-3		1/4	
-1 -2 -3 -4 0		1/8	
0		1/32	
1			

Notice that $y = log_2 x$ is a reflection of $y = 2^x$ in the line y = x.

Also notice:

log 2(0) does not exist

and $\log_2(-b)$ does not exist because the graph does not have any points on the left of the y axis.

Our calculators only have log values to the base 10 and e. ie $\log_{10} = \log$ and $\log_e = \ln$ (used later in Y13)

Use your calculator to find

1.
$$\log_{10} 8 =$$

$$2. \log_{10} 80 =$$

3. If
$$\log_{10} x = 2.5$$

then $10^{2.5} = x$
so $x =$

- 4. Find *x*
- (a) $\log_{10} x = 3.1$
- (b) $\log_{10} 3x = 1.5$

(c)
$$\log_{10} x = 3.4$$

so $10^{3.4} = x$

(d)
$$\log_{10}(5x) = 1.6$$

(e)
$$10^{x} = 4.1$$

so $\log_{10} 4.1 = x$
 $x =$

(f)
$$10^{2x} = 54.2$$

(g)
$$10^x = 2.4$$

so $\log_{10} 2.4 = x$
 $x =$

(h)
$$10^x = 0.7$$

(i)
$$10^{(5x)} = 4.7$$

(j)
$$\log_{10}(x+2) = 0.345$$

(k)
$$\log_{10}(x-4) = 0.3$$

(1)
$$10^{(2x-4)} = 1.3$$

(m)
$$10^{(4x+1)} = 86$$

$$1. \log (xy) = \log x + \log y$$

This means that when you multiply 2 numbers you add the indices (ie logs)

$$2. \log \left(\frac{x}{y}\right) = \log x - \log y$$

This means that when you divide 2 numbers you subtract the indices (logs)

$$3. \log x^n = n \log x$$

This is just an extension of law 1 and becomes more meaningful when we consider:

$$log x^{3} = log x.x.x$$

$$= log x + log x + log x$$

$$= 3 log x$$

1. Using these laws, expand these:

eg

$$log a^4b^3 = log a^4 + log b^3$$

 $= 4 log a + 3 log b$

$$(a) \log c^5 d^6 =$$

(b)
$$\log \frac{p^5}{v^4}$$

$$(d) \log \frac{av}{bw} =$$

$$(e) \log \frac{a c^5}{b^3 n^2} =$$

Combine these into one log function.

$$eg \log 3 + \log 5 = \log 15$$

(a)
$$\log 6 - \log 2$$

(b)
$$\log 5 + \log 7$$

(c)
$$\log 12 - \log 4$$

(d)
$$\log 7 - \log 8$$

(e)
$$4 \log 2 + 2 \log 3$$

The way to find log 3 14 is

$$let x = log_{3} 14$$

$$so 3^{x} = 14$$

$$then log_{10} 3^{x} = log_{10} 14$$

$$so x log_{10} 3 = log_{10} 14$$

$$so x = log_{10} 14$$

$$log_{10} 3$$

Find: