ANTIDIFFERENTIATION PROBLEMS.

1. Find the equation of the curve which passes through the point (2, 9) and whose gradient is $\frac{dy}{dx} = 2x - 5\frac{dx}{dx}$	3. Find the equation of the curve $y = f(x)$ if the gradient is $f'(x) = x^4$ and $f(1) = 0$. (<i>ie when</i> $x = 1$, $y = 0$)
2. Find the equation of the curve $y = f(x)$ if the gradient is $y' = 6x^2 + 8x - 7$ and when $x = 1$, $y = 5$	4. Find the equation of the curve whose gradient function is $\frac{dy}{dx} = x - x^2$ $\frac{dx}{dx}$ and when $x = 1$, $y = 1$

5(a) If the distance of a car from O is $x = 6t^2 + 2t + 1$ find the velocity equation

ie $v = \frac{dx}{dt} = \frac{dx}{dt}$

and find the acceleration equation.

ie <u>dv</u> = <u>dt</u>

(b) The acceleration of a car is $\frac{dv}{dt} = 6t + 1$

(i) Find the Velocity equation given that when t = 0then v = 4 m/s

(ii) Find the displacement equation (ie distance equ) given that when t = 0then the distance from O is x = 2m

6. $f'(x) = 6x - 12x^2$ and the curve passes through the point (2, 4). Find the equation of the curve y = f(x)

7. Find the antiderivatives.

(a)
$$\frac{dy}{dx} = 4x^3 - 7x$$

(b)
$$\frac{dy}{dx} = \frac{3x}{2} + \frac{5x^2}{4}$$

=

8.(a) The acceleration of an object moving in a line is a = 6t - 4At t = 0, the object is at O moving with a velocity of $v = 1 ms^{-1}$ Find the velocity equation at time *t sec*

(b) Find at what times the velocity becomes zero.