ANTIDIFFERENTIATION PROBLEMS.

1. Find the equation of the curve which passes through the point $(2,9)$ and whose gradient is

$$
\underline{d y}=2 x-5
$$

$$
d x
$$

2. Find the equation of the curve $y=f(x)$ if the gradient is
$y^{\prime}=6 x^{2}+8 x-7$ and when $x=1, y=5$
3. Find the equation of the curve $y=f(x)$ if the gradient is $f^{\prime}(x)=x^{4}$ and $f(1)=0$.
(ie when $x=1, y=0$)
4. Find the equation of the curve whose gradient function is $\underline{d y}=\boldsymbol{x}-\boldsymbol{x}^{2}$

$$
\overline{d x}
$$

and when $x=1, y=1$

5(a) If the distance of a car from O is $x=6 t^{2}+2 t+1$
find the velocity equation
ie $v=\frac{d x}{d t}=$
and find the acceleration equation.
ie $\frac{d v}{d t}=$
(b) The acceleration of a car is
$\frac{d v}{d t}=6 t+1$
(i) Find the Velocity
equation given that when $\boldsymbol{t}=\mathbf{0}$ then $\boldsymbol{v}=\mathbf{4} \boldsymbol{m} / \mathrm{s}$
(ii) Find the displacement equation (ie distance equ) given that when $\boldsymbol{t}=0$ then the distance from O is $\boldsymbol{x}=2 \boldsymbol{m}$
6. $f^{\prime}(x)=6 x-12 x^{2}$ and the curve passes through the point $(2,4)$.
Find the equation of the curve $y=f(x)$
7. Find the antiderivatives.
(a) $\frac{d y}{d x}=4 x^{3}-7 x$
(b) $\frac{d y}{d x}=\frac{3 x}{2}+\frac{5 x^{2}}{4}$
$=$
8.(a) The acceleration of an object moving in a line is $\quad a=6 \boldsymbol{t}-4$
At $\boldsymbol{t}=\mathbf{0}$, the object is at O moving with a velocity of $v=1 \boldsymbol{m s}^{-1}$
Find the velocity equation at time $\boldsymbol{t} \boldsymbol{s e c}$
(b) Find at what times the velocity becomes zero.

