SIMPLE DERIVATIVES or FINDING GRADIENTS OF CURVES or DIFFERENTIATING.

ANSWERS
GENERAL RULE
If $y=x^{n}$
then $y^{\prime}=n x^{n-1}$
This rule works for ALL numerical values of n.
Eg. 1. $y=x^{8}$

$$
y^{\prime}=8 x^{7}
$$

2. $y=x^{-9}$

$$
y^{\prime}=-9 x^{-10}
$$

3. $y=x^{6.4}$
$y^{\prime}=6.4 x^{5.4}$
4. $y=x^{1 / 3}$
$y^{\prime}=\frac{7}{8} x^{-1 / 8}$
5. $y=5 x^{2}$

$$
y^{\prime}=10 x^{1}=10 x
$$

6. $y=4 x=4 x^{1}$
$y^{\prime}=1 \times 4 x^{0}=4$
but we should not go to this trouble in cases like this. It is
better to think of $y=4 x$ as a line of gradient 4. In other words there is no need to use the general rule for x to the power 1 .
7. Similarly $y=6$ is a
horizontal line so its gradient is zero. $y^{\prime}=0$
Applying the general rule is possible but not advisable.
Eg $y=6=6 x^{0}$
So $y^{\prime}=0 \times 6 \times x^{-1}=0$

Find the gradient functions
(or differentiate these equations)
(or find the derivatives)
(or find the derived functions)

1. $y=x^{5} \quad y^{\prime}=5 x^{4}$
2. $y=4 x^{7} \quad y^{\prime}=28 x^{6}$
3. $y=x^{-4} y^{\prime}=-4 x^{-5}$
4. $y=x^{1.6} y^{\prime}=1.6 x^{0.6}$
5. $y=x^{2 / 3} \quad y^{\prime}=\frac{2 x^{-1 / 3}}{3}$
6. $y=12 x^{1 / 3} y^{\prime}=4 x^{-2 / 3}$
7. $y=8 x^{-1 / 2} y^{\prime}=-4 x^{-3 / 2}$
8. $y=6 x \quad y^{\prime}=6$
9. $y=2 \quad y^{\prime}=0$
10. $y=x^{3}+5 x^{2}+7 x+4$ $y^{\prime}=3 x^{2}+10 x+7$
11. $y=(x+5)^{2}=(x+5)(x+5)$

$$
\begin{aligned}
& =x^{2}+10 x+25 \\
y^{\prime} & =2 x+10
\end{aligned}
$$

12. $y=(3 x+4)(2 x-5)$

$$
=6 x^{2}-7 x-20
$$

$$
y^{\prime}=12 x-7
$$

13. $\begin{aligned} y=\frac{x^{12}+x^{7}}{x^{3}} & =\frac{x^{12}}{x^{3}}+\frac{x^{7}}{x^{3}} \\ & =x^{9}+x^{4}\end{aligned}$

$$
y^{\prime}=9 x^{8}+4 x^{3}
$$

14. $y=\frac{x^{9}+x^{5}}{x^{3}}=x^{6}+x^{2}$
$y^{\prime}=6 x^{5}+2 x$
$15 * \cdot y=\frac{x^{8}+x^{2}}{x^{5}}=x^{3}+x^{-3}$

$$
y^{\prime}=3 x^{2}-3 x^{-4}
$$

16* $y=\sqrt{ } x=x^{1 / 2}$

$$
y^{\prime}=\frac{1}{2} x^{-1 / 2}
$$

17. $y=\frac{1}{x^{4}}=x^{-4}$

$$
y^{\prime}=-4 x^{-5}
$$

18. $y=\frac{5}{x^{2}}=5 x^{-2}$

$$
y^{\prime}=-10 x^{-3}
$$

19.* $y=\frac{4}{3 x^{7}}=\frac{4 x^{-7}}{3}$

$$
y^{\prime}=\frac{-28}{3} x^{-8}
$$

20. $y=\frac{x^{3}-4 x}{\sqrt{x}}$

$$
=\frac{x^{3}-4 x}{x^{1 / 2}}
$$

$$
=x^{5 / 2}-4 x^{1 / 2}
$$

$$
y^{\prime}=\frac{5}{2} x^{3 / 2}-2 x^{-1 / 2}
$$

