SIMPLE DERIVATIVES or FINDING GRADIENTS OF CURVES or DIFFERENTIATING.

ANSWERS	Find the gradient functions (or differentiate these equations) (or find the derivatives)	14. $y = x^9 + x^5 = x^6 + x^2$
GENERAL RULE	(or find the dertrant es)	$\frac{x^3}{x^3}$
If $y = x^n$	(or find the derived functions) $\frac{5}{5}$	
then $y'=n x^{n-1}$	1. $y = x^5$ $y' = 5x^4$	$y'= 6x^5+2x$
This rule works for ALL	2. $y = 4x^7$ $y' = 28 x^6$	$15^* \cdot y = \frac{x^8 + x^2}{x^5} = x^3 + x^{-3}$
numerical values of n. Eg. 1. $y = x^8$	3. $y = x^{-4}$ $y' = -4x^{-5}$	
$y' = 8x^7$	4. $y = x^{1.6}$ $y' = 1.6 x^{0.6}$	$y'=3x^2-3x^{-4}$
2. $y = x^{-9}$ $y' = -9 x^{-10}$	5. $y = x^{\frac{2}{3}}$ $y' = \frac{2x}{3}$	$16* y = \sqrt{x} = x^{\frac{1}{2}}$
3. $y = x^{6.4}$	$\begin{array}{c} 3\\ 6. \ y = 12 \ x^{\frac{1}{3}} \ y' = 4 \ x^{-\frac{2}{3}} \end{array}$	$y' = \frac{1}{2}x^{-\frac{1}{2}}$
$y' = 6.4 x^{5.4}$	7. $y = 8 x^{-\frac{1}{2}} y' = -4 x^{-\frac{3}{2}}$	17. $y = \frac{1}{x^4} = x^{-4}$
4. $y = x^{\frac{7}{8}}$		
$y' = \frac{7}{8} x^{-\frac{1}{8}}$	8. $y = 6x$ $y' = 6$	$y'=-4x^{-5}$
5. $y = 5x^2$ $y' = 10x^1 = 10x$		18. $y = \frac{5}{x^2} = 5 x^{-2}$
6. $y = 4x = 4x^{1}$	10. $y = x^3 + 5x^2 + 7x + 4$	t = = 3
$y' = 1 \times 4 x^0 = 4$	$y'=3x^2+10x+7$	$y' = -10 x^{-3}$
but we should not go to this trouble in cases like this. It is better to think of $y = 4x$ as a line	11. $y = (x + 5)^2 = (x+5)(x+5)$ = $x^2 + 10x + 25$	19.* $y = \frac{4}{3x^7} = \frac{4}{3}x^{-7}$
of gradient 4. In other words	y' = 2x + 10	8
there is no need to use the general rule for x to the power 1.	y = (3x + 4)(2x + 3)	$y' = -\frac{28}{3}x^{-8}$
7. Similarly $y = 6$ is a	$= 6x^2 - 7x - 20$ y'= 12x - 7	$20. y = \frac{x^3 - 4x}{\sqrt{x}}$
horizontal line so its gradient is $y' = 0$		$= \frac{x^3 - 4x}{x^{\frac{1}{2}}}$
zero. $y' = 0$ Applying the general rule is possible but not advisable.	13. $y = \frac{x^{12} + x^7}{x^3} = \frac{x^{12}}{x^3} + \frac{x^7}{x^3}$	$= x^{5/2} - 4 x^{1/2}$
$Eg \ y = 6 = 6 x^{0}$	$= x^9 + x^4$	
So $y'=0\times 6\times x^{-1}=0$	$y' = 9x^8 + 4x^3$	$y' = \frac{5}{2} x^{3/2} - 2 x^{-1/2}$