GENERAL RULE

If $y=x^{n}$
then $y^{\prime}=n x^{n-1}$

MODEL EXAMPLES:

This rule works for ALL numerical values of n .
eg. 1. $y=x^{8}$

$$
y^{\prime}=8 x^{7}
$$

2. $y=x^{-9}$

$$
y^{\prime}=-9 x^{-10}
$$

3. $y=x^{6.4}$

$$
y^{\prime}=6.4 x^{5.4}
$$

4. $y=x^{1 / 8}$

$$
y^{\prime}=\frac{7}{8} x^{-1 / 8}
$$

5. $y=5 x^{2}$
$y^{\prime}=10 x^{1}=10 x$
6. $y=4 x=4 x^{1}$
$y^{\prime}=1 \times 4 x^{0}=4$
but we should not go to this trouble in cases like this. It is better to think of $y=4 x$ as a line of gradient 4. In other words there is no need to use the general rule for x to the power 1 .
7. Similarly $\boldsymbol{y}=\boldsymbol{6}$ is a horizontal line so its gradient is zero. $\boldsymbol{y}^{\prime}=\mathbf{0}$
Applying the general rule here is possible but not necessary!
eg $y=6=6 x^{0}$
So $y^{\prime}=0 \times 6 \times x^{-1}=0$
$\left|\begin{array}{l}\text { Find the "gradient functions" } \\ \text { (or "differentiate" these equations) }\end{array}\right|$ 14. $y=\frac{x^{9}+x^{5}}{x^{3}}$
(or "find the derivatives")
(or "find the derived functions")
8. $y=x^{5} \quad y^{\prime}=$
9. $y=4 x^{7} \quad y^{\prime}=$
10. $y=x^{-4} y^{\prime}=$
11. $y=x^{1.6} y^{\prime}=$
12. $y=x^{2 / 3} \quad y^{\prime}=$
13. $y=12 x^{2} y^{\prime}=$
14. $y=8 x \quad y^{\prime}=$
15. $y=\frac{x}{3} \quad y^{\prime}=$
16. $y=2 \quad y^{\prime}=$
17. $y=x^{3}+5 x^{2}+7 x+4$ $y^{\prime}=$
18. $y=(x+5)^{2}=(x+5)(x+5)$
$=$
$y^{\prime}=$
19. $y=(3 x+4)(2 x-5)$
$\begin{aligned} &= \\ & y^{\prime}= \\ & \text { 13. } \begin{aligned} y & =\frac{x^{12}+x^{7}}{x^{3}}\end{aligned}=\frac{x^{12}}{x^{3}}+\frac{x^{7}}{x^{3}} \\ &=x^{9}+x^{4}\end{aligned}$
$y^{\prime}=$

$$
y^{\prime}=
$$

$$
15^{*} \cdot y=\frac{6 x^{8}+4 x^{12}}{2 x^{5}}
$$

$$
y^{\prime}=
$$

$$
16^{*} \quad y=\sqrt{ } x=x^{1 / 2}
$$

$$
y^{\prime}=
$$

17. $y=4(3-2 x)$

$$
y^{\prime}=
$$

18. $y=x(4 x-5)$

$$
y^{\prime}=
$$

19. $y=\frac{4 x^{5}}{3}$

$$
y^{\prime}=
$$

20. $y=8-0.5 x+\frac{3 x^{4}}{5}$

$$
y^{\prime}=
$$

21. $y=\pi(x+3)^{2}$
$=$
$y^{\prime}=$
