SOME PARTICULARLY GOOD FACTORISATIONS WHERE STUDENTS NEED TO CONSIDER ALL POSSIBILITIES.

1. $4 x^{2}+5 x-9$
2. $4 x^{2}+16 x-9$
3. $4 x^{2}+9 x-9$
4. $4 x^{2}+12 x-9$

Students need to realise the possible combinations which produce $4 x^{2}$ and 9:
\qquad 1) middle term comes from 9x and $4 x(\pm 13 x$ or $\pm 5 x)$
\qquad
3) middle term comes from 12x and $3 x(\pm 15 x$ or $\pm 9 x)$
(2x \qquad

1) middle term comes from $18 x$ and $2 x(\pm 20 x$ or $\pm 16 x)$
(2x
3)($2 x$
2) middle term comes from $6 x$ and $6 x(\pm 12 x$ or $0 x)$

The question from the 2013 paper is like the above:
$6 x^{2}-11 x-10$

Possibilities:

$(6 x$	$10)(x$	$1)$	middle term comes from $6 x$ and $10 x$
$(6 x$	$1)(x$	$10)$	middle term comes from $60 x$ and $1 x$
$(6 x$	$5)(x$	$2)$	middle term comes from $5 x$ and $12 x$
$(6 x$	$2)(x$	$5)$	middle term comes from $2 x$ and $30 x$
$(3 x$	$10)(2 x$	$1)$	middle term comes from 20x and $3 x$
$(3 x$	$1)(2 x$	$10)$	middle term comes from $2 x$ and $30 x$
$(3 x$	$5)(2 x$	2)	middle term comes from $10 x$ and $6 x$
$(3 x$	$2)(2 x$	5)	middle term comes from $4 x$ and $15 x$

