STEP GRAPHS (teacher notes)

Suppose the cost of a taxi consists of a flat fee of $\$ 3$ followed by a $\$ 1$ fee for every km travelled.

$x=$ Number of km	$y=$ Cost
0	3
1	4
2	5
3	6

We would probably expect that this graph shows this information:

But the cost does not increase smoothly with a gradient of 1.
The cost of a ride up to but not including $1 \mathrm{~km}=\$ 3$
The cost SUDDENLY jumps to $\$ 4$ at 1 km and stays there until the 2 km mark is reached.

The general convention is that a FULL CIRCLE O includes the point and an OPEN CIRCLE O excludes the point.
At $x=2.9 \mathrm{~km}$ the cost is $y=\$ 5$
At $x=3.0 \mathrm{~km}$ the cost is $y=\$ 6$
At $x=3.1 \mathrm{~km}$ the cost is $y=\$ 6$
This is called a STEP FUNCTION or STEP GRAPH and most costs must follow this idea.

Describe this step function using equations and domains.

SOLUTION
$y=3$ if $0 \leq x<1$
$y=4$ if $1 \leq x<2$
$y=5$ if $2 \leq x<3$
$y=6$ if $3 \leq x<4$

