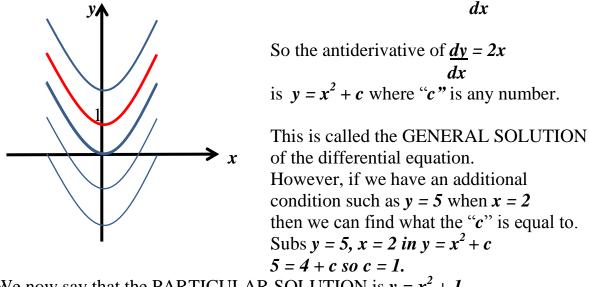
DIFFERENTIAL EQUATIONS and GRAPHS of DERIVATIVES.

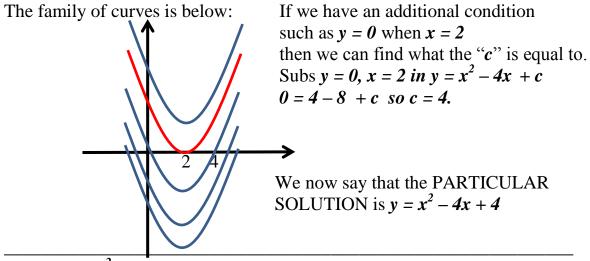
1. Consider the differential equation $\frac{dy}{dx} = 2x$

If we antidifferentiate (or Integrate), then the equation for y could be $y = x^2$ or $y = x^2 + 1$ or $y = x^2 + 2$ or $y = x^2 - 99$ or $y = x^2 \pm any$ number! This means a whole <u>family of curves</u> have the same derivative dy = 2x



We now say that the PARTICULAR SOLUTION is $y = x^2 + 1$

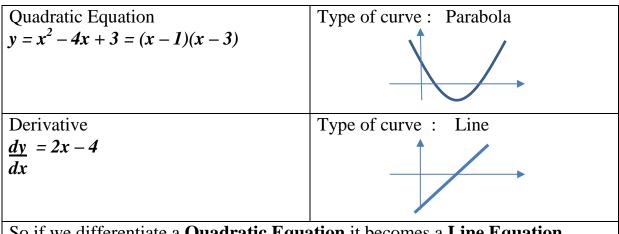
2. Similarly, if $\frac{dy}{dx} = 2x - 4$ then the general solution is $y = x^2 - 4x + c$



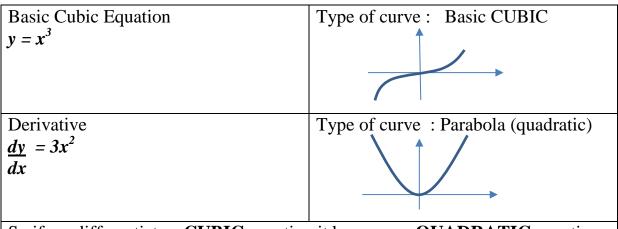
3. If $\frac{dy}{dx} = 3x^2$ find the **general solution** for *y*. $\frac{dx}{dx}$ Sketch the "family" of curves.

Find the **particular solution** for when x = 2, y = 13

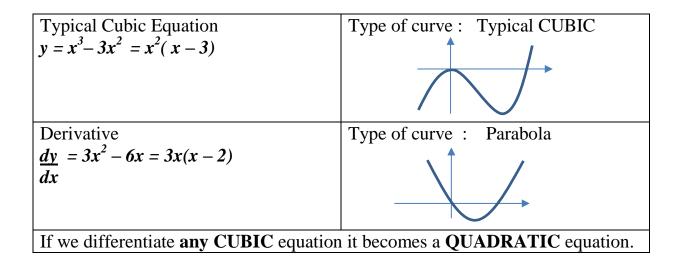
4. Notice what happens to a polynomial when we **DIFFERENTIATE** it:

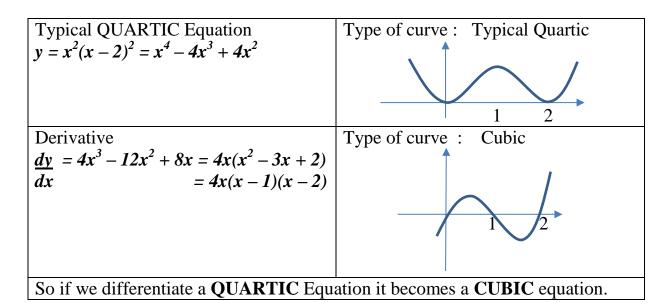


So if we differentiate a Quadratic Equation it becomes a Line Equation.

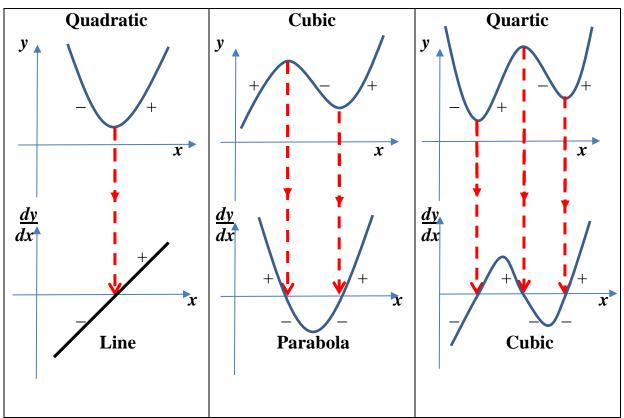


So if we differentiate a CUBIC equation it becomes a QUADRATIC equation.

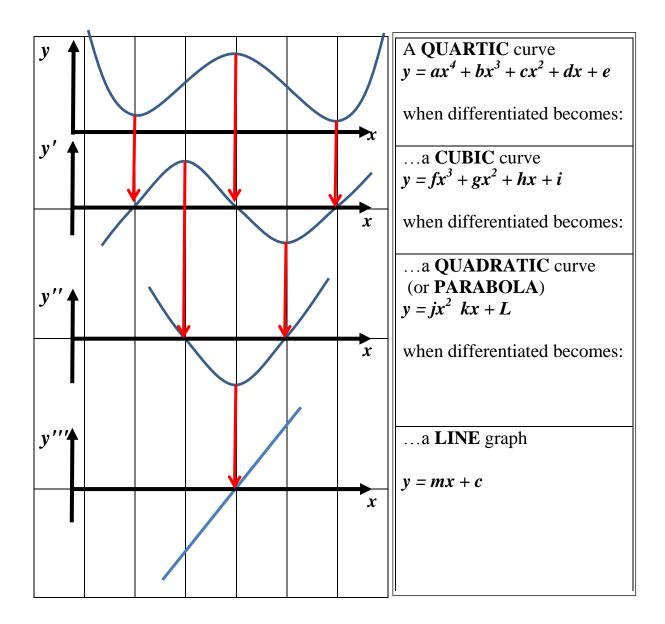


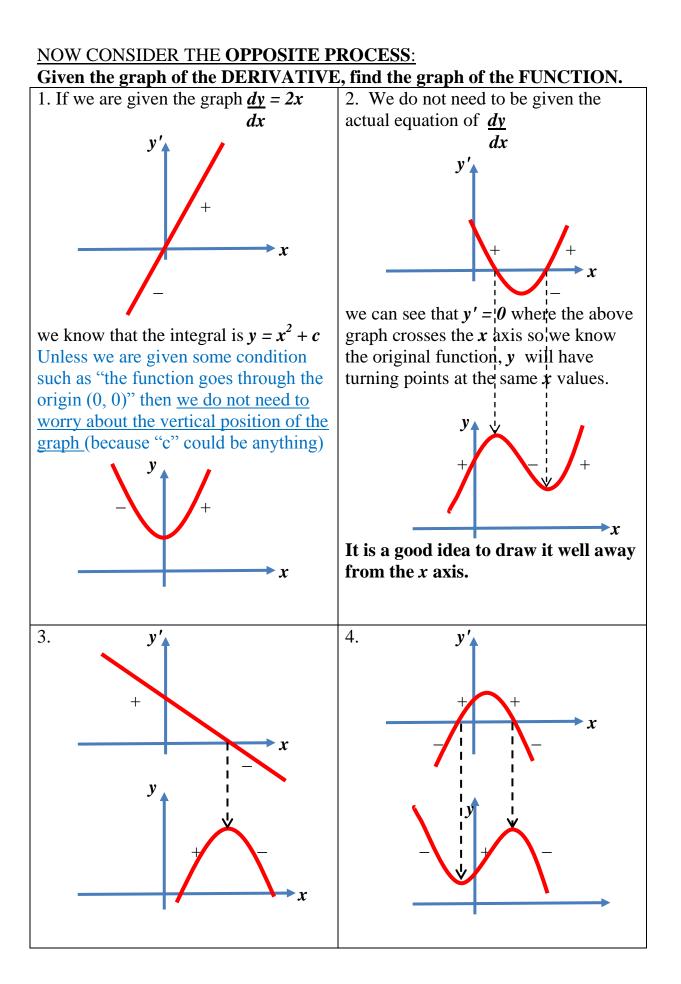


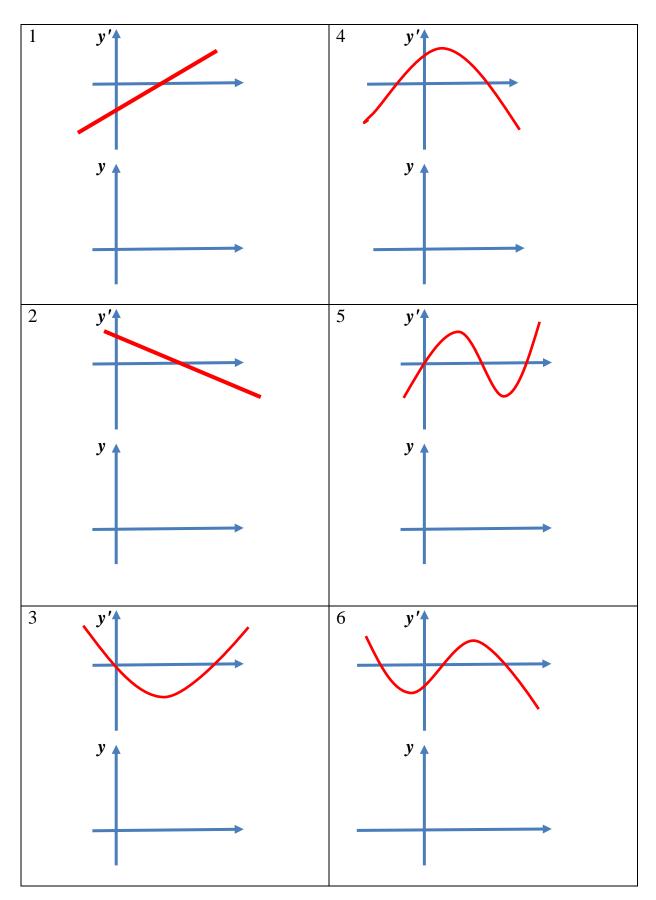
SUMMARISING:



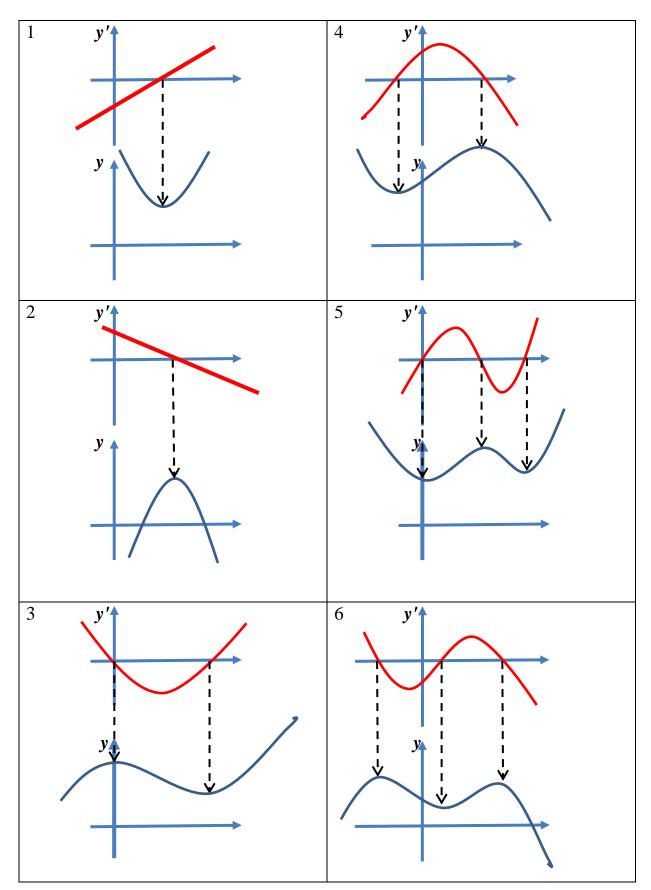
In the above graphs, the "idea" used is that **points on the basic** *x*, *y* **graph where the gradient is zero**, **mean that the graph of the gradient function crosses the** *x* **axis at these same** *x* **values**. (See above how the vertical lines show this.)







Given the following graphs of $\frac{dy}{dx}$, draw the graphs of the original functions.



Given the following graphs of $\frac{dy}{dx}$, draw the graphs of the original functions. SOLUTIONS $\frac{dy}{dx}$

ADVANCED SECTION: (Excellence Level) THE THREE TYPES OF CUBIC GRAPHS.

These three very similar <u>CUBIC EQUATIONS</u> have very different <u>GRAPHS</u>: $y = x^3 - 3x^2 + 2x$; $y = x^3 - 3x^2 + 3x$; $y = x^3 - 3x^2 + 4x$

1. $y = x^3 - 3x^2 + 2x$											
$y' = 3x^2 - 6x + 2 = 0$ for max/min so $x = 0.42$ and 1.58											
Г	so x = 0.42 and 1.38										
	Х	0.3	0.42	0.5		1.4	1.58	1.7			
	у′	+	0	1		-	0	+			
l											

Max (0.42, 0.38) Min (1.58, -0.38)

y''= 6x - 6 = 0 at inflection point so x = 1Inflection point at (1, 0)

2. $y = x^3 - 3x^2 + 3x$ If $y' = 3x^2 - 6x + 3 = 0$ then x = 1 but it is neither a max nor a min but the gradient is zero.

Х	.5	1	1.5
у′	+	0	+

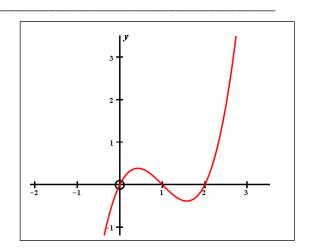
y'' = 6x - 6 = 0 at inflection point so x = 1

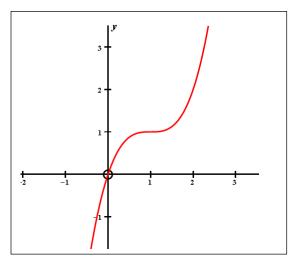
This cubic does not have a max or min point even though the gradient = 0 It has a **Stationary Inflection point** at (1, 1)

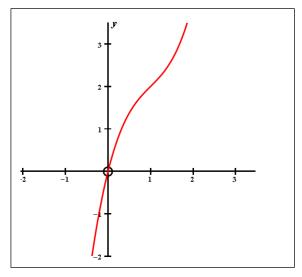
3. $y = x^3 - 3x^2 + 4x$ $y' = 3x^2 - 6x + 4 = 0$ for max/min but this equation has <u>no real solutions</u> so the gradient is NEVER zero.

X	0.5	1	1.5	
у ′	1.75	1	1.75	

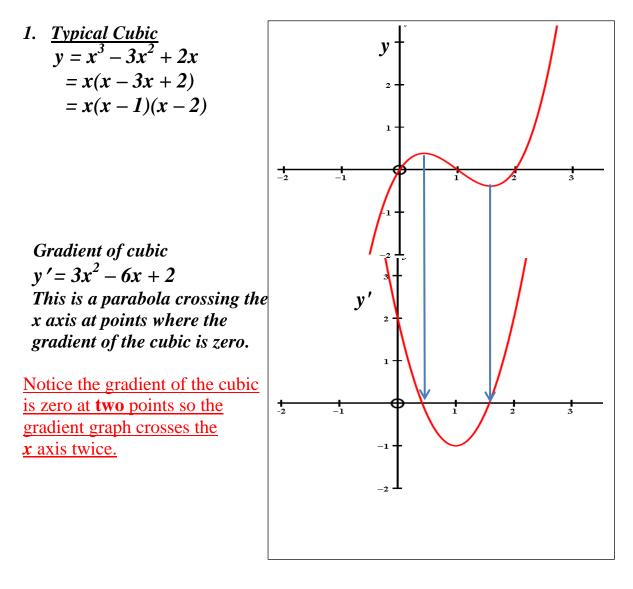
y''= 6x - 6 = 0 at inflection point so x = 1<u>Inflection point</u> is at (1, 2)



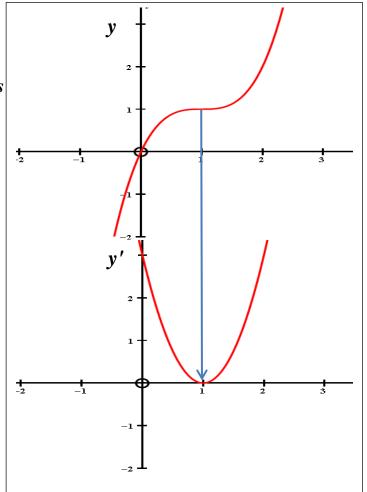




It is now very instructive to compare the above graphs with the graphs of their respective gradients.



2. <u>Special Cubic</u> $y = x^3 - 3x^2 + 3x$ $= x(x^2 - 3x + 3)$ This cubic only crosses the x axis once at x = 0 because the other factor $(x^2 - 3x + 3) \neq 0$ (ie it has no real solutions)



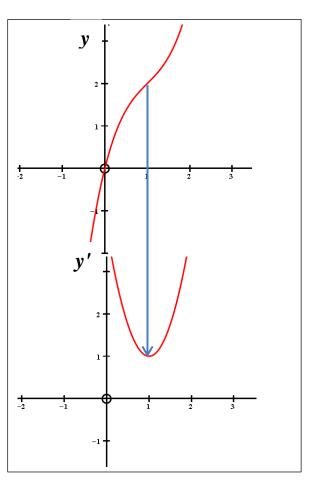
$$y' = 3x^{2} - 6x + 3$$

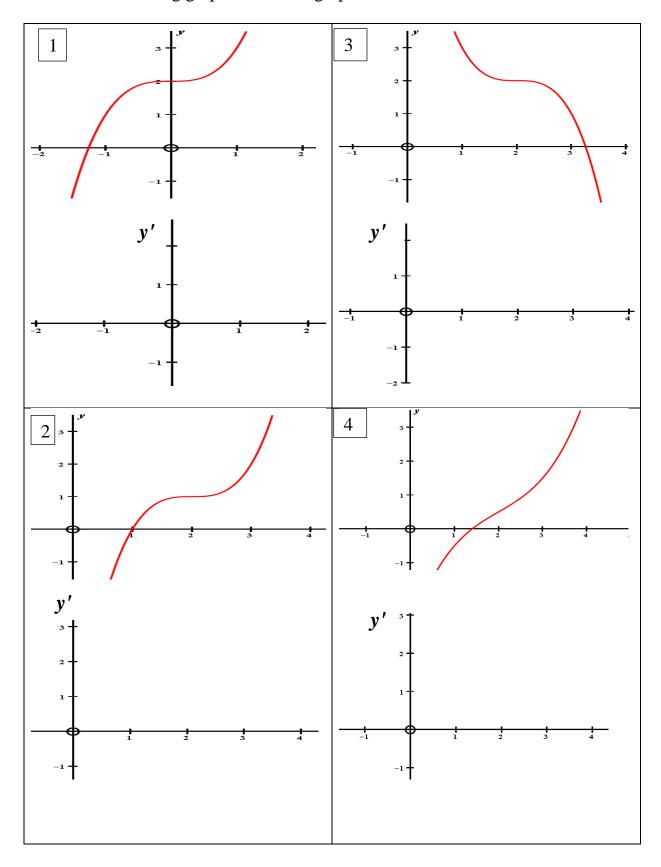
= 3(x² - 2x + 1)
= 3(x - 1)²

The gradient is zero only at the one point x = 1<u>This is a parabola crossing the</u> <u>x axis at the only point where</u> <u>the gradient of the cubic is zero.</u>

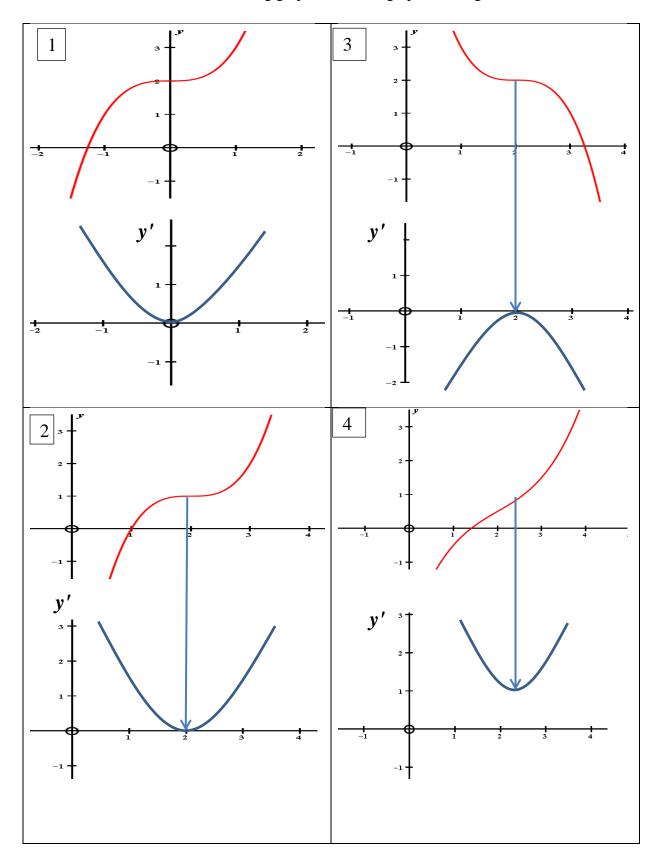
3. <u>Another special Cubic</u> $y = x^3 - 3x^2 + 4x$ $= x(x^2 - 3x + 4)$ This cubic only crosses the x axis once at x = 0 because the other factor $(x^2 - 3x + 4) \neq 0$ (ie it has no real solutions)

 $y' = 3x^2 - 6x + 4$ <u>This quadratic has no real solutions</u> <u>so the graph does not cross the</u> <u>x axis</u>. <u>This means that the gradient of the</u> <u>Cubic is never equal to zero.</u>





Given the following graphs, draw the graphs of the GRADIENT functions.



SOLUTIONS Given the following graphs, draw the graphs of the gradient functions .

