5a PARALLEL CALCULUS QUESTIONS FROM NCEA EXAMS. ACHIEVED LEVEL

1a If $f(x)=3 x^{2}-5 x+3$ find the gradient at $x=1 / 2$	lb If $\frac{d y}{d x}=3 x^{2}+6 x+2$ find the equation for y given that when $x=1$, $y=5$
Find the x coordinate where the	
gradient of $y=4 x^{2}-12 x+5$ equals 2	2b The pressure P in a tube at t secs is given by $P=t^{3}+t^{2}+5 t$. Find the rate of increase of pressure when $t=4$ secs

MERIT LEVEL

1c A flare is fired from a boat. The height of the flare is given by $H=80 t-5 t^{2}+3$ Find the maximum height of the flare.	1d Find the coordinates of the max/min points on the curve $y=x^{3}-2 x^{2}-4 x+3$ and distinguish between them.
2c A stone is dropped into a pool of water and a circular ripple is formed. The area of the ripple is $A=\pi r^{2}$ Find the rate of increase in the area of the ripple, with respect to r, when the area is $64 \pi \mathrm{~m}^{2}$	2d The gradient of a parabola is given by $\frac{d y}{d x}=2 x-10$ and 6 is the minimum value of the curve. Find the equation of the curve.
3c Find the equation of the tangent to the curve $y=0.5 x^{2}-4 x+3$ at $x=2$	A rectangular enclosure is made from 40 metres of fence using a wall as one side. Use calculus to find the maximum area of the enclosure.

