ACHIEVED LEVEL	
1a If $f(x) = 3x^2 - 5x + 3$ find the gradient at $x = \frac{1}{2}$	1b If $dy = 3x^2 + 6x + 2$ find the dx equation for y given that when $x = 1$, y = 5
2a Find the x coordinate where the gradient of $y = 4x^2 - 12x + 5$ equals 2	2b The pressure P in a tube at t secs is given by $P = t^3 + t^2 + 5t$. Find the rate of increase of pressure when $t = 4$ secs
3a Find the x values when the gradient of $y = 2x^3 - 3x^2 - 12x$ is zero.	3b Find the equation of the curve that goes through (0, 0) and has a gradient of $\frac{dy}{dx} = x^3 - x^2 + x - 1$ $\frac{dx}{dx}$

5a PARALLEL CALCULUS QUESTIONS FROM NCEA EXAMS.

MERIT LEVEL

MERIT LEVEL	1
1c A flare is fired from a boat. The height of the flare is given by $H = 80t - 5t^2 + 3$ Find the maximum height of the flare.	1d Find the coordinates of the max/min points on the curve $y = x^3 - 2x^2 - 4x + 3$ and distinguish between them.
2c A stone is dropped into a pool of water and a circular ripple is formed. The area of the ripple is $A = \pi r^2$ Find the rate of increase in the area of the ripple, with respect to r, when the area is $64\pi m^2$	2d The gradient of a parabola is given by $\frac{dy}{dx} = 2x - 10$ dx and 6 is the minimum value of the curve. Find the equation of the curve.
3c Find the equation of the tangent to the curve $y = 0.5x^2 - 4x + 3$ at $x = 2$	3d wall x 40 - 2x A rectangular enclosure is made from 40 metres of fence using a wall as one side. Use calculus to find the maximum area of the enclosure.