PARALLEL QUESTIONS FROM THE NCEA EXAMINATIONS(2) It is IMPORTANT to keep all these topics FRESH in your mind. ALGEBRA

ACHIEVEMENT LEVEL

1a Factorise $6x^2 - 11x - 2$	1b Solve $6x^2 - 11x - 2 = 0$
2a Simplify $\frac{(4x^4)^2}{(2x^2)^3}$	2b Simplify $(8 x^{12})^{\frac{3}{2}}$
3a Find x $Log_{x}(64) = 6$	3b If $T = p \sqrt{ab}$ make b the subject of the equation.

You need 5 out of 6 correct for achieved!

PARALLEL QUESTIONS FROM THE NCEA EXAMINATIONS(3) It is IMPORTANT to keep all these topics FRESH in your mind. ALGEBRA

AU		
1a	Factorise $6x^2 + x - 2$	1b Solve $6x^2 + x - 2 = 0$
2a	Simplify $(3x^2)^3 \times (2x^3)^2$	2b Simplify $\left(\frac{9a^2}{25b^4}\right)^{-\frac{1}{2}}$
3a	Find log 4 (12)	3b Make v the subject of the formula: $\sqrt{\frac{a}{b+v}} = p^3$

You need 5 out of 6 correct for achieved!

PARALLEL QUESTIONS FROM THE NCEA EXAMINATIONS(4) It is IMPORTANT to keep all these topics FRESH in your mind. ALGEBRA MERIT LEVEL

1c If the roots of the equation $px^2 + qx + r = 0$ are $x = 7$ and $x = -9$ find p, q and r	1d Solve $x = log_2(70)$
2c If $P = D \times (1.08)^n$	2d Combine into one fraction:
Find n if $P = 4D$	$\frac{4}{3x-5} + \frac{6}{2x-1}$
3c Solve for x	3d Solve the equation:
$2^x \times 3^x = 40$	$\frac{1}{x+1} + \frac{1}{x+2} = \frac{5}{6}$

You need 1 merit question correct in each of the questions 1, 2 and 3.

PARALLEL QUESTIONS FROM THE NCEA EXAMINATIONS(5) It is IMPORTANT to keep all these topics FRESH in your mind. ALGEBRA

MERIT LEVEL to Excellence Level.	
1c If the roots of the equation	1d The length of a room is 3 m
$ax^2 + bx + c = 0$	longer than the width and its area is
are $x = \frac{2}{3}$ and $x = -\frac{3}{4}$	108 m ² . Form an equation and solve
find <i>a</i> , <i>b</i> and <i>c as integers</i> .	it to find the width and length of the
	room.
2c Solve $(x^2 - 5)^2 = 16$	2d Combine into one fraction:
	<u>7</u> <u>6</u>
	x-6 $x-4$
3c Solve	3d Find the range of values of p so
$(x^2 - 4)^2 = (x + 2)^2$	that $x^2 + (p - I)x + p + 2 = 0$ has
	(i) 1 real solution.
	(ii) no real solutions.
	(iii) 2 real solutions

You need 1 merit question correct in each of the questions 1, 2 and 3.