	REFRESHING YOUR	BASIC KNOWLEGE
1a	$If y = 12x^2$	$1b If \underline{dy} = 12x^2$
	<u>dy</u> =	dx
	dx	<i>y</i> =
2a	If $y = x^5$	$2b \qquad If \underline{dy} = x^5$
	dy =	$\frac{dx}{dx}$
	dx	<i>y</i> =
<i>3a</i>	If $y = 3x^4$	$3b If \underline{dy} = 3x^4$
	$\frac{dy}{dx} =$	dx
4 a	$\frac{dx}{dt}$	$\frac{y}{4b} If \underline{dy} = \underline{x^3}$
4 <i>a</i>	$\frac{\frac{dy}{dx} =}{\frac{dx}{3}}$	$40 1j \ \underline{dy} = \underline{x}$ $dx 3$
	dy =	y =
	$\frac{dx}{dx}$	5
5 <i>a</i>	If $y = (x + 7)(x - 9)$	$5b If \underline{dy} = (x+7)(x-9)$
		dx
	$\frac{dy}{dx} =$	<i>y</i> =
6a	$\frac{dx}{Find the gradient of y = x^2 - 6x}$	$6b If \underline{dy} = x^2 - 6x$
	at x = 3	$\frac{\partial v}{\partial x} = \frac{1}{2} \frac{dx}{dx}$
		find the equation for y given that the
		curve goes through (3, 10)
7a	Find the gradient of $y = \frac{x^3}{x^3} + x^2$	7b Find the equation of the tangent
	$\frac{1}{3}$	to the curve $y = \underline{x^3} + x^2$ at (3, 18)
at th	he point (3, 18)	$\frac{1}{3}$
8a	Find the gradient of the tangent	8b Find the equation of the tangent
	to $y = x^2 - 4x$ at the point (1, -3)	to $y = x^2 - 4x$ at the point (1, -3)

9	Find the x value of the point on the curve $y = x^2 - 6x + 8$ where the
	gradient is equal to 4

10 Find the x value of the point on the curve $y = x^2 - 6x + 8$ where the gradient is equal to 0. Also do a sketch to verify whether this is a maximum point or a minimum point.

11 Find the x values of the points on the curve $y = 2x^3 - 6x^2 - 12$ where the gradient is equal to 0. Also do a sketch to verify which value gives a maximum point and which value of x gives a minimum point. Between what two x values is this function decreasing?

12 The height of a ball kicked vertically up is $h = 40t - 5t^2$. Find the greatest height the ball will reach.