REFRESHING YOUR BASIC KNOWLEGE

$\begin{array}{\|ll} \hline 1 a & \text { If } y=12 x^{\frac{1}{2}} \\ & \frac{d y}{d x}= \end{array}$	$\begin{gathered} \text { If } \frac{d y}{d x}=12 x^{2} \\ y= \end{gathered}$
$\begin{array}{ll} 2 a & \text { If } y=x^{5} \\ & \frac{d y}{d x}= \end{array}$	$2 b \quad \text { If } \frac{d y}{d x}=x^{5}$
$\begin{array}{cc} 3 a \quad \text { If } y & =3 x^{4} \\ & \frac{d y}{d x} \end{array}$	$\begin{array}{cc} \hline 3 b & \text { If } \frac{d y}{d x}=3 x^{4} \\ y= \\ \hline \end{array}$
$\begin{array}{ll} \hline 4 a & \text { If } y=\frac{x^{3}}{3} \\ & \frac{d y}{d x}= \end{array}$	$\begin{gathered} 4 b \quad \text { If } \frac{d y}{d x}=\frac{x^{3}}{3} \\ y= \end{gathered}$
$\begin{gathered} \text { 5a If } y=(x+7)(x-9) \\ \frac{d y}{d x}= \end{gathered}$	$\begin{aligned} & 5 b \quad \text { If } \frac{d y}{d x}=(x+7)(x-9) \\ & y= \end{aligned}$
$\begin{aligned} & \text { 6a Find the gradient of } y=x^{2}-6 x \\ & \text { at } x=3 \end{aligned}$	$6 \mathrm{~b} \quad$ If $\frac{d y}{d x}=x^{2}-6 x$ find the equation for y given that the curve goes through $(\mathbf{3}, 10)$
$7 a \quad$ Find the gradient of $y=\frac{x^{3}}{3}+x^{2}$ at the point $(3,18)$	$7 b$ Find the equation of the tangent to the curve $y=\frac{x^{3}}{3}+x^{2}$ at $(3,18)$
8a Find the gradient of the tangent to $y=x^{2}-4 x$ at the point $(1,-3)$	8b Find the equation of the tangent to $y=x^{2}-4 x$ at the point $(1,-3)$

9 Find the x value of the point on the curve $y=x^{2}-6 x+8$ where the gradient is equal to 4

10 Find the x value of the point on the curve $y=x^{2}-6 x+8$ where the gradient is equal to 0.
Also do a sketch to verify whether this is a maximum point or a minimum point.

11 Find the x values of the points on the curve $y=2 x^{3}-6 x^{2}-12$ where the gradient is equal to 0.
Also do a sketch to verify which value gives a maximum point and which value of x gives a minimum point.
Between what two x values is this function decreasing?

12 The height of a ball kicked vertically up is $h=40 t-5 t^{2}$. Find the greatest height the ball will reach.

