ACADEMIC TYPE MAX/MIN PROBLEMS.

1. The graph shown is $\boldsymbol{y}=12-\boldsymbol{x}^{2}$
for $0 \leq x \leq \sqrt{ } 12$
P is the general point $(\boldsymbol{x}, \boldsymbol{y})$ on the curve
A rectangle is drawn passing through P and the origin $(0,0)$

Find the maximum area of the rectangle.

The Area of the rectangle is $\boldsymbol{A}=\boldsymbol{x y}$
Subs $y=12-x^{2}$ and we get $\begin{aligned} A & =x\left(12-x^{2}\right) \\ A & =12 x-x^{3}\end{aligned}$

$$
A=12 x-x^{3}
$$

Differentiating $A^{\prime}=12-3 x^{2}=0$ for max area

$$
3 x^{2}=12
$$

$$
x^{2}=4
$$

$$
x=2 \text { since } 0 \leq x \leq \sqrt{ } 12
$$

If $x=2, y=12-4=8$
So max area $=16 \mathrm{~cm}^{2}$
2. The graph shown is $y=(x-6)^{2}$
for $0 \leq x \leq 6$
P is the general point (x, y) on the curve
A rectangle is drawn passing through P and the origin $(0,0)$

Find the maximum area of the rectangle.

The Area of the rectangle is $\boldsymbol{A}=\boldsymbol{x y}$
Subs $y=(x-6)^{2}$ and we get $A=x(x-6)^{2}$

$$
\begin{gathered}
A=x\left(x^{2}-12 x+36\right) \\
A=x^{3}-12 x^{2}+36 x \\
\text { Differentiating } \begin{array}{c}
A^{\prime}=3 x^{2}-24 x+36=0 \text { for max area } \\
\\
3\left(x^{2}-8 x+12\right)=0 \\
\\
3(x-2)(x-6)=0 \\
x=2 \text { or } x=6
\end{array} \\
x
\end{gathered}
$$

If $x=6, y=0$ so the area $=0$. This must be the Min area.
Max area is when $x=2, y=16$
Max area $=32 \mathrm{~cm}^{2}$
3. The graph shown is $\boldsymbol{y}=\boldsymbol{6} \boldsymbol{x}-\boldsymbol{x}^{2}$
for $0 \leq x \leq 6$
P is the general point $(\boldsymbol{x}, \boldsymbol{y})$ on the curve

A triangle is drawn passing through P and the origin $(0,0)$

Find the maximum area of the triangle.

The Area of the triangle is $\boldsymbol{A}=\underline{\boldsymbol{x y}}$
Subs $y=6 x-x^{2}$ and we get $A=\frac{x\left(6 x-x^{2}\right)}{2}$ so $A=\frac{6 x^{2}-x^{3}}{2}$
Differentiating $A^{\prime}=\frac{12 x-3 x^{2}}{2}=0$ for max area

$$
\begin{gathered}
12 x-3 x^{2}=0 \\
3 x(4-x)=0 \\
x=4 \text { or } 0
\end{gathered}
$$

If $x=0, y=0$ so Area $=0$. This must be the MIN area.
If $x=4, y=24-16=8$
So max area $=\frac{4 \times 8}{2}=16 \mathrm{~cm}^{2}$
If $x=2, y=12-4=8$
So max area $=16 \mathrm{~cm}^{2}$
4. The graph shown is $\boldsymbol{y}=(\boldsymbol{x}-\boldsymbol{b})^{2}$
for $\boldsymbol{0} \leq \boldsymbol{x} \leq \boldsymbol{b}$
P is the general point $(\boldsymbol{x}, \boldsymbol{y})$ on the curve A rectangle is drawn passing through P and the origin $(0,0)$
Find the maximum area of the rer angle.

The Area of the rectangle is $\boldsymbol{A}=\boldsymbol{x y}$

Subs $\boldsymbol{y}=(\boldsymbol{x}-\boldsymbol{6})^{2}$ and we get $\boldsymbol{A}=\boldsymbol{x}(\boldsymbol{x}-\boldsymbol{b})^{2}$

$$
A=x\left(x^{2}-2 b x+b^{2}\right)=x^{3}-2 b x^{2}+b^{2} x
$$

Differentiating $A^{\prime}=3 x^{2}-4 b x+b^{2}=0$ for max area

$$
\begin{gathered}
(3 x-b)(x-b)=0 \\
x=\frac{b}{3} \text { or } x=b
\end{gathered}
$$

If $x=b, y=0$ so the area $=0$. This must be the Min area.
Max area is when $x=\frac{b}{3}, y=(\underline{b}-b)^{2}=\frac{4 b^{2}}{9}$
Max area $=\frac{b}{3} \times \frac{4 b^{2}}{9}=\frac{4 b^{3}}{27} \quad \mathrm{~cm}^{2}$

