EXCELLENCE PRACTICE.

(a) Find the equation of the parabola.
(b) The line has a gradient of 1 and is a tangent to the parabola.

The equation of the tangent is $\boldsymbol{y}=\boldsymbol{x}+\boldsymbol{c}$ where \boldsymbol{c} is not yet known.
Find the value of \boldsymbol{c}.
(c) Point P is where the line crosses the \boldsymbol{x} axis.

Point Q is at $(3,0)$
Find the distance PQ

EXCELLENCE PRACTICE. ANSWERS

(a) Find the equation of the parabola.

EQU is of the form $y=-b(x-5)^{2}+6$
Subs $(3,2) \quad 2=-b(3-5)^{2}+6$

$$
-4=-b(4)
$$

$$
b=1
$$

Equ is $y=-(x-5)^{2}+6$
(b) The line has a gradient of 1 and is a tangent to the parabola.

The equation of the tangent is $\boldsymbol{y}=\boldsymbol{x}+\boldsymbol{c}$ where \boldsymbol{c} is not yet known.
Find the value of \boldsymbol{c}.
Intersection is when $x+c=-(x-5)^{2}+6$

$$
\begin{aligned}
x+c & =-\left(x^{2}-10 x+25\right)+6 \\
x+c & =-x^{2}+10 x-19 \\
x^{2}-9 x+(c+19) & =0
\end{aligned}
$$

The line is a tangent so $)=0$

$$
\begin{aligned}
9^{2}-4(c+19) & =0 \\
81-4 c-76 & =0 \\
5 & =4 c \\
\frac{5}{4} & =c
\end{aligned}
$$

Tangent is $y=x+1.25$
(c) Point P is where the line crosses the \boldsymbol{x} axis.

Point Q is at $(3,0)$
Find the distance PQ

$$
\begin{aligned}
& y=x+1.25 \text { crosses } x \text { axis when } y=0 \\
& 0=x+1.25
\end{aligned}
$$

$$
\text { So } x=-1.25
$$

Distance $P O=+1.25$ (cant have a negative distance!)

$$
O Q=3
$$

So $P Q=4.25$

